Wstęp do programowania / Ćwiczenia 5: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „<math> ” na „<math>” |
|||
(Nie pokazano 3 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 222: | Linia 222: | ||
== Zadanie 6 (Pierwiastek z x)== | == Zadanie 6 (Pierwiastek z x)== | ||
Napisz program obliczający sufit z pierwiastka z x, dla <math> x \in N ,x>0 </math> (oczywiście bez operacji pierwiastek). | Napisz program obliczający sufit z pierwiastka z x, dla <math>x \in N ,x>0</math> (oczywiście bez operacji pierwiastek). | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> | ||
Linia 321: | Linia 321: | ||
Dla zadanych x,n > 0 wyznacz x<sup>n</sup> (oczywiscie bez exp i ln). | Dla zadanych x,n > 0 wyznacz x<sup>n</sup> (oczywiscie bez exp i ln). | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Oczywiście nie chodzi o to, by pomnożyć x przez siebie n-1 razy. | Oczywiście nie chodzi o to, by pomnożyć x przez siebie n-1 razy. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Użyj podobnego pomysłu jak przy mnożeniu chłopów rosyjskich. Pamiętaj, że mnożenie ma się tak do dodawania, jak potęgowanie do mnożenia. | Użyj podobnego pomysłu jak przy mnożeniu chłopów rosyjskich. Pamiętaj, że mnożenie ma się tak do dodawania, jak potęgowanie do mnożenia. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' BinPower(x,n:integer):integer; | '''function''' BinPower(x,n:integer):integer; | ||
// Dla x,n > 0 wyznaczamy x do potęgi n | // Dla x,n > 0 wyznaczamy x do potęgi n | ||
Linia 353: | Linia 359: | ||
</div> | </div> | ||
</div> | </div> | ||
O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania. | O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania. | ||
Linia 359: | Linia 365: | ||
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A. | Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Kluczowe jest użycie dodatkowej tablicy B rozmiaru N, w której pod indeksem i przechowuje się minimalną wartość kończącą podciąg niemalejący o długości i w dotychczas przejrzanej części tablicy A, od 1 do k. Żeby uwzględnić A[k+1], należy w tablicy B odnależć miejsce na A[k+1] (najlepiej binarnie). | Kluczowe jest użycie dodatkowej tablicy B rozmiaru N, w której pod indeksem i przechowuje się minimalną wartość kończącą podciąg niemalejący o długości i w dotychczas przejrzanej części tablicy A, od 1 do k. Żeby uwzględnić A[k+1], należy w tablicy B odnależć miejsce na A[k+1] (najlepiej binarnie). | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none">Zacznijmy od pomocniczej funkcji ZnajdźPierwszyWiększy(A:array[1..N] of integer; l,p,x:integer):integer, która w tablicy A, na odcinku od l do p, wyznacza indeks pierwszego elementu o wartości większej od x przy założeniu że A[p] > x. | |||
'''function''' ZnajdźPierwszyWiększy(C:array[1..N] of integer; l,p,x:integer):integer; | '''function''' ZnajdźPierwszyWiększy(C:array[1..N] of integer; l,p,x:integer):integer; | ||
//Tablica C jest posortowana niemalejąco na odcinku od l do p, zakładamy, że C[p] > x; | //Tablica C jest posortowana niemalejąco na odcinku od l do p, zakładamy, że C[p] > x; | ||
Linia 407: | Linia 416: | ||
</div> | </div> | ||
</div> | </div> | ||
</div> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> | ||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none">Czy algorytm zachłanny by zadziałał? Zachłanność polegałaby na tym, że przedłużalibyśmy podciąg pod warunkiem, że rozważany element jest niemniejszy od ostatniego elementu dotychczas znalezionego maksymalnego podciągu. | |||
</div> | |||
</div> |
Aktualna wersja na dzień 22:14, 11 wrz 2023
<<< Powrót do modułu Składnia i semantyka instrukcji
To są zadania na wyszukiwanie binarne.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Pierwsze wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce pierwszego wystąpienia x (lub 0 gdy nie ma żadnego x)
Rozwiązanie 1
Ćwiczenie 1
Zadanie 2 (Ostatnie wystąpienie x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Znajdź miejsce ostatniego wystąpienia x (lub 0 gdy nie ma żadnego x)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Zadanie 3 (Liczba wystąpień x)
Dana jest posortowana niemalejąco tablica A typu array[1..N] of integer i x typu integer. Wyznacz liczbę wystąpień x w tablicy A.
Wskazówka 1
Rozwiązanie 1
Zadanie 4 (Wartość równa indeksowi)
Dana jest posortowana rosnąco tablica A typu array[1..N] of integer. Sprawdź czy występuje w niej element o wartości równej swojemu indeksowi. Jeśli tak, to wyznacz ten indeks, jeśli nie, to funkcja ma dać wartość 0.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Maksimum w ciągu bitonicznym)
Dana jest tablica A typu array[1..N] of integer, w której wartości ułożone są w ciąg bitoniczny (czyli istnieje 1 ≤ i ≤ N, takie że dla wszystkich k, takich że 1 ≤ k < i zachodzi A[k] < A[k+1] a dla wszystkich k, takich że i ≤ k < N zachodzi A[k] > A[k+1]). Znajdź maksimum w tym ciągu.
Wskazówka 1
Rozwiązanie 1
Zadanie 6 (Pierwiastek z x)
Napisz program obliczający sufit z pierwiastka z x, dla (oczywiście bez operacji pierwiastek).
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Inna wersja zadania
A jak znaleźć podłogę z pierwiastka z x ?
Wskazówka 3
Rozwiązanie 3
Zadanie 7 (BinPower)
Dla zadanych x,n > 0 wyznacz xn (oczywiscie bez exp i ln).
Wskazówka 1
Wskazówka 2
Rozwiązanie 1
O ile istnieją proste algorytmy mnożące w czasie wielomianowym (choćby szkolne słupki), to w przypadku potęgowania nie ma oczywistego szybkiego algorytmu potęgującego. Można spytać, po co usprawniać kod potęgowania, gdy wykładniki w naturze wcale nie sa takie duże. Nic bardziej mylnego! W jednym z najpopularniejszych algorytmów kryptograficznych - kodowaniu RSA - używa się potęgowania o wykładnikach będących bardzo dużymi liczbami (zazwyczaj stukilkudziesięciocyfrowymi!). Poleglibyśmy sromotnie, gdybyśmy próbowali mnożyć odpowiednią liczbę razy przez siebie podstawę potęgowania.
Zadanie 8 (Najdłuższy podciąg niemalejący)
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1