Wstęp do programowania/Rekursja/Ćwiczenia: Różnice pomiędzy wersjami
(Nie pokazano 6 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 11: | Linia 11: | ||
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 79: | Linia 83: | ||
Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś miejscu ''opuszcza'' zaznaczoną część tablicy, czyli istnieją dwa sąsiednie pola (i,j) i (i',j') na tej ścieżce, takie że A[i,j]=-1, A[i',j']=1. Z tego wynika, że funkcja szukaj została (w czasie działania programu) wywołana z parametrami (i,j), ale nie została wywołana z parametrami (i',j'). Jest to niemożliwe, bo pola te sąsiadują ze sobą i wywołanie dla (i,j) wywołałoby rekurencyjnie 'szukaj' dla (i',j'). | Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś miejscu ''opuszcza'' zaznaczoną część tablicy, czyli istnieją dwa sąsiednie pola (i,j) i (i',j') na tej ścieżce, takie że A[i,j]=-1, A[i',j']=1. Z tego wynika, że funkcja szukaj została (w czasie działania programu) wywołana z parametrami (i,j), ale nie została wywołana z parametrami (i',j'). Jest to niemożliwe, bo pola te sąsiadują ze sobą i wywołanie dla (i,j) wywołałoby rekurencyjnie 'szukaj' dla (i',j'). | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 3</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Odpowiedź</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> | ||
Linia 117: | Linia 128: | ||
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej. | Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Zadanie to należy rozwiązywać tak jak poprzednie. Jedyną różnicą jest to, jak należy decydować czy z danego pola można przejść do sąsiedniego: oprócz zaznaczenia trzeba wziąć pod uwagę różnicę wysokości. | Zadanie to należy rozwiązywać tak jak poprzednie. Jedyną różnicą jest to, jak należy decydować czy z danego pola można przejść do sąsiedniego: oprócz zaznaczenia trzeba wziąć pod uwagę różnicę wysokości. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Zjazd1(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Zjazd1(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 172: | Linia 187: | ||
''Dyskusja:'' Tak jak w rozwiązaniu poprzedniego zadania, istnienie sąsiada na planszy badamy przed wywołaniem rekurencyjnym, a poprawność przejścia na początku wywołania. Służy nam do tego dodatkowy parametr 'h', który oznacza wysokość poprzedniego pola. Dlatego pierwsze wywołanie funkcji 'szukaj' ma pierwszy parametr A[i1,j1]+1 (w wariancie I). '''Uwaga!''' Funkcja ta nie zadziała, jeśli A[i1,j1]=MaxInt (czyli maksymalnej możliwej wartości typu integer). Poniżej przedstawione jest rozwiązanie bez tego mankamentu. | ''Dyskusja:'' Tak jak w rozwiązaniu poprzedniego zadania, istnienie sąsiada na planszy badamy przed wywołaniem rekurencyjnym, a poprawność przejścia na początku wywołania. Służy nam do tego dodatkowy parametr 'h', który oznacza wysokość poprzedniego pola. Dlatego pierwsze wywołanie funkcji 'szukaj' ma pierwszy parametr A[i1,j1]+1 (w wariancie I). '''Uwaga!''' Funkcja ta nie zadziała, jeśli A[i1,j1]=MaxInt (czyli maksymalnej możliwej wartości typu integer). Poniżej przedstawione jest rozwiązanie bez tego mankamentu. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Zjazd2(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Zjazd2(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 228: | Linia 245: | ||
''Opis:'' Rozwiązanie jest bardzo podobne do poprzedniego. Różnica polega na przeniesieniu kodu z początku funkcji 'szukaj' do osobnej funkcji 'wdol'. Funkcja ta jest używana jako test dopuszczający do rekurencyjnego wywołania funkcji 'szukaj'. | ''Opis:'' Rozwiązanie jest bardzo podobne do poprzedniego. Różnica polega na przeniesieniu kodu z początku funkcji 'szukaj' do osobnej funkcji 'wdol'. Funkcja ta jest używana jako test dopuszczający do rekurencyjnego wywołania funkcji 'szukaj'. | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 3 (Wieże Hanoi z ograniczeniami)== | ==Zadanie 3 (Wieże Hanoi z ograniczeniami)== | ||
Linia 234: | Linia 251: | ||
Na wykładzie omawiane były [[Wstęp do programowania/Rekursja#wieze Hanoi|wieże Hanoi]]. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach. | Na wykładzie omawiane były [[Wstęp do programowania/Rekursja#wieze Hanoi|wieże Hanoi]]. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
* Dozwolone ruchy najlepiej reprezentować w tablicy typu TDozwRuchow = array[1..3, 1..3] of boolean, (przekątna nie ma znaczenia). | * Dozwolone ruchy najlepiej reprezentować w tablicy typu TDozwRuchow = array[1..3, 1..3] of boolean, (przekątna nie ma znaczenia). | ||
* Zastanów się, jaki warunek musi być spełniony przez tablicę dozwolonych ruchów, aby zadanie miało rozwiązanie. | * Zastanów się, jaki warunek musi być spełniony przez tablicę dozwolonych ruchów, aby zadanie miało rozwiązanie. | ||
* Użyj funkcji-otoczki do wstępnego sprawdzenia czy istnieje rozwiązanie oraz do pamiętania tablicy dozwolonych ruchów w czasie działania funkcji rekurencyjnej. | * Użyj funkcji-otoczki do wstępnego sprawdzenia czy istnieje rozwiązanie oraz do pamiętania tablicy dozwolonych ruchów w czasie działania funkcji rekurencyjnej. | ||
</div> | </div> | ||
</div> | </div> | ||
<!-- | <!-- | ||
Linia 247: | Linia 266: | ||
end; | end; | ||
--> | --> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''type''' Paleczki = 1..3; | '''type''' Paleczki = 1..3; | ||
Linia 295: | Linia 316: | ||
''Omówienie:'' Zauważ, że dużo łatwiej jest rozwiązać to zadanie sformułowane w sposób ogólny, niż gdy powie się, że zabroniony jest konkretny ruch (np. 1 → 2). | ''Omówienie:'' Zauważ, że dużo łatwiej jest rozwiązać to zadanie sformułowane w sposób ogólny, niż gdy powie się, że zabroniony jest konkretny ruch (np. 1 → 2). | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jaki przypadek jest najgorszy i ile trzeba wykonać wtedy ruchów? | Jaki przypadek jest najgorszy i ile trzeba wykonać wtedy ruchów? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Odpowiedź</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Najgorszy przypadek to taki, gdy przerwane jest połączenie Skąd-Dokąd w obie strony. Wtedy trzeba wykonać <math>3^{Ile}-1</math> ruchów) | Najgorszy przypadek to taki, gdy przerwane jest połączenie Skąd-Dokąd w obie strony. Wtedy trzeba wykonać <math>3^{Ile}-1</math> ruchów) | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 4 (Ustawianie hetmanów)== | ==Zadanie 4 (Ustawianie hetmanów)== | ||
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały. | Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
W tablicach logicznych pamiętamy zajętość kolumn i obu rodzajów przekątnych, kolejnego hetmana ustawiamy w kolejnym wierszu jeśli się da, jeśli nie wracamy. | W tablicach logicznych pamiętamy zajętość kolumn i obu rodzajów przekątnych, kolejnego hetmana ustawiamy w kolejnym wierszu jeśli się da, jeśli nie wracamy. | ||
Linia 317: | Linia 343: | ||
Oczywiście lepiej uogólnić na N hetmanów na szachownicy N×N. | Oczywiście lepiej uogólnić na N hetmanów na szachownicy N×N. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''procedure''' Hetmany(N:integer); | '''procedure''' Hetmany(N:integer); | ||
// N >= 1 | // N >= 1 | ||
Linia 397: | Linia 425: | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 5 (Mnożenie wielomianów)== | ==Zadanie 5 (Mnożenie wielomianów)== | ||
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki. | Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Zamiast rozwiązania naiwnego wymagającego <math>n^2</math> mnożeń zróbmy trochę lepsze (aczkolwiek nie najlepsze) polegające na podzieleniu wielomianów na dwie części. Cały pomysł polega na spostrzeżeniu, że jeśli zadane wielomiany <math>p(x)</math> i <math>q(x)</math> podzielimy na dolną i górną część<br> | Zamiast rozwiązania naiwnego wymagającego <math>n^2</math> mnożeń zróbmy trochę lepsze (aczkolwiek nie najlepsze) polegające na podzieleniu wielomianów na dwie części. Cały pomysł polega na spostrzeżeniu, że jeśli zadane wielomiany <math>p(x)</math> i <math>q(x)</math> podzielimy na dolną i górną część<br> | ||
<math>p(x) = p_l(x) + p_h(x)*x^{N/2}</math> i analogicznie | <math>p(x) = p_l(x) + p_h(x)*x^{N/2}</math> i analogicznie | ||
Linia 412: | Linia 442: | ||
Czyli potrzebujemy 3 mnożeń o połowę mniejszych wielomianów. W sumie uzyskamy liczbę mnożeń rzędu <math>n^{lg 3}</math>. Szczegóły można znaleźć w [[Sedgewick|Sedgewick Algorithms in C++]], str. 527-530. | Czyli potrzebujemy 3 mnożeń o połowę mniejszych wielomianów. W sumie uzyskamy liczbę mnożeń rzędu <math>n^{lg 3}</math>. Szczegóły można znaleźć w [[Sedgewick|Sedgewick Algorithms in C++]], str. 527-530. | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 6 (Suma składników)== | ==Zadanie 6 (Suma składników)== | ||
Linia 421: | Linia 451: | ||
3 = 1+1+1 | 3 = 1+1+1 | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''procedure''' Suma(n:integer); | '''procedure''' Suma(n:integer); | ||
// 1 <= n | // 1 <= n | ||
Linia 480: | Linia 516: | ||
Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | ||
</div> | </div> | ||
</div> | </div> | ||
<!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... | <!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... |
Aktualna wersja na dzień 16:23, 28 maj 2020
To są zadania na rekursję.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Labirynt)
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3
Odpowiedź
Dla ciekawskich:
Zadanie 2 (Z górki na pazurki)
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa gór (każdy punkt ma podaną dodatnią wysokość). Sprawdź, czy da się przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc:
- tylko w dół lub po płaskim
- tylko w dół
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 3 (Wieże Hanoi z ograniczeniami)
Na wykładzie omawiane były wieże Hanoi. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 4 (Ustawianie hetmanów)
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Mnożenie wielomianów)
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki.
Wskazówka 1
Zadanie 6 (Suma składników)
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy liczb naturalnych większych od zera ustawionych w kolejności nierosnącej. Np. dla n = 3:
3 = 3
3 = 2+1
3 = 1+1+1
Wskazówka 1
Wskazówka 2
Rozwiązanie 1