Wstęp do programowania/Rekursja/Ćwiczenia: Różnice pomiędzy wersjami
mNie podano opisu zmian |
|||
(Nie pokazano 16 wersji utworzonych przez 4 użytkowników) | |||
Linia 11: | Linia 11: | ||
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.) | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | Właściwą funkcję rekurencyjną szukającą drogi zamknij w funkcji-otoczce, która poza wywołaniem funkcji rekurencyjnej sprawdzi poprawność argumentów, przygotuje i/lub posprząta tablicę z labiryntem, zinterpretuje wynik funkcji rekurencyjnej itp. oraz będzie przechowywać dane wspólne dla wszystkich wywołań funkcji rekurencyjnej. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Labirynt(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 73: | Linia 77: | ||
Zauważ, że testy 1 i 2, mogłyby być wykonane przed każdym wywołaniem funkcji 'szukaj' w punkcie 4 (oraz w otoczce) zamiast na jej początku, jednak prowadziłoby to do wielokrotnego pisania bardzo podobnych fragmentów programu, co łatwo prowadzi do błędów. Oczywiście nie zmniejszyłoby to złożoności czasowej i pamięciowej. | Zauważ, że testy 1 i 2, mogłyby być wykonane przed każdym wywołaniem funkcji 'szukaj' w punkcie 4 (oraz w otoczce) zamiast na jej początku, jednak prowadziłoby to do wielokrotnego pisania bardzo podobnych fragmentów programu, co łatwo prowadzi do błędów. Oczywiście nie zmniejszyłoby to złożoności czasowej i pamięciowej. | ||
Podobnie jak testy 1 i 2, testy istnienia sąsiadów (i>1), (i<M) itp. w punkcie 4 mogłyby być wykonane na początku funkcji 'szukaj' (wtedy nie zakładalibyśmy, że (i,j) jest poprawnym punktem w tablicy), ale nie mając wiedzy w którą stronę ostatnio poszliśmy, musielibyśmy | Podobnie jak testy 1 i 2, testy istnienia sąsiadów (i>1), (i<M) itp. w punkcie 4 mogłyby być wykonane na początku funkcji 'szukaj' (wtedy nie zakładalibyśmy, że (i,j) jest poprawnym punktem w tablicy), ale nie mając wiedzy w którą stronę ostatnio poszliśmy, musielibyśmy sprawdzić pełną poprawność obu współrzędnych (i,j), czyli w sumie sprawdzalibyśmy 4 warunki. W aktualnej wersji sprawdzamy tylko 1 warunek. | ||
''Poprawność rozwiązania:'' Oczywiste jest, że jeśli funkcja 'Labirynt' da wynik true, to ścieżka z (i1,j1) do (i2,j2) istnieje. Mniej oczywiste jest, że jeśli funkcja da wynik false, to ścieżka na pewno nie istnieje. | ''Poprawność rozwiązania:'' Oczywiste jest, że jeśli funkcja 'Labirynt' da wynik true, to ścieżka z (i1,j1) do (i2,j2) istnieje. Mniej oczywiste jest, że jeśli funkcja da wynik false, to ścieżka na pewno nie istnieje. | ||
Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś | Aby przeprowadzić dowód przez sprzeczność, załóżmy, że funkcja 'szukaj' wywołana w funkcji 'Labirynt' dała wynik false, a ścieżka z (i1,j1) do (i2,j2) istnieje. W takim razie A[i1,j1]=-1 a A[i2,j2]=1. Wynika z tego, że ścieżka z (i1,j1) do (i2,j2) w którymś miejscu ''opuszcza'' zaznaczoną część tablicy, czyli istnieją dwa sąsiednie pola (i,j) i (i',j') na tej ścieżce, takie że A[i,j]=-1, A[i',j']=1. Z tego wynika, że funkcja szukaj została (w czasie działania programu) wywołana z parametrami (i,j), ale nie została wywołana z parametrami (i',j'). Jest to niemożliwe, bo pola te sąsiadują ze sobą i wywołanie dla (i,j) wywołałoby rekurencyjnie 'szukaj' dla (i',j'). | ||
</div> | |||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | Ile razy maksymalnie może być wywołana funkcja 'szukaj' dla tego samego punktu? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | Jak przerobić przedstawione rozwiązanie na program wypisujący na ekran ścieżkę pomiędzy punktami (i1,j1) i (i2,j2), o ile taka ścieżka istnieje? Czy wypisana ścieżka będzie najkrótsza z możliwych ? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 3</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | Co by się stało, gdybyśmy usuwali zaznaczenie wychodząc z funkcji 'szukaj'? Czy program dalej by działał? Jeśli tak, to jaką by miał złożoność? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Odpowiedź</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | Program dalej by działał, ale miałby wykładniczą złożoność czasową zamiast liniowej (złożoność pamięciowa pozostałaby liniowa). W tej wersji program wielokrotnie przeszukiwałby sąsiadów pól, o których już z wcześniejszych obliczeń wiadomo, że nie da się z nich dojść do punktu końcowego. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"> | ||
Linia 111: | Linia 122: | ||
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa | W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa | ||
gór (każdy punkt ma podaną dodatnią wysokość). | gór (każdy punkt ma podaną dodatnią wysokość). Sprawdź, czy da się | ||
przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc: | przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc: | ||
* tylko w dół lub po płaskim | * tylko w dół lub po płaskim | ||
Linia 117: | Linia 128: | ||
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej. | Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Zadanie to należy rozwiązywać tak jak poprzednie. Jedyną różnicą jest to, jak należy decydować czy z danego pola można przejść do sąsiedniego: oprócz zaznaczenia trzeba wziąć pod uwagę różnicę wysokości. | Zadanie to należy rozwiązywać tak jak poprzednie. Jedyną różnicą jest to, jak należy decydować czy z danego pola można przejść do sąsiedniego: oprócz zaznaczenia trzeba wziąć pod uwagę różnicę wysokości. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Zjazd1(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Zjazd1(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 135: | Linia 150: | ||
'''begin''' | '''begin''' | ||
jest:=false; | jest:=false; | ||
'''if''' (A[i,j]>0) '''and''' (h>A[i,j]) '''begin''' // h>=A[i,j] w wariancie II | '''if''' (A[i,j]>0) '''and''' (h>A[i,j])'''then''' '''begin''' // h>=A[i,j] w wariancie II | ||
'''if''' (i=i2) '''and''' (j=j2) '''then''' | '''if''' (i=i2) '''and''' (j=j2) '''then''' | ||
jest:=true | jest:=true | ||
Linia 172: | Linia 187: | ||
''Dyskusja:'' Tak jak w rozwiązaniu poprzedniego zadania, istnienie sąsiada na planszy badamy przed wywołaniem rekurencyjnym, a poprawność przejścia na początku wywołania. Służy nam do tego dodatkowy parametr 'h', który oznacza wysokość poprzedniego pola. Dlatego pierwsze wywołanie funkcji 'szukaj' ma pierwszy parametr A[i1,j1]+1 (w wariancie I). '''Uwaga!''' Funkcja ta nie zadziała, jeśli A[i1,j1]=MaxInt (czyli maksymalnej możliwej wartości typu integer). Poniżej przedstawione jest rozwiązanie bez tego mankamentu. | ''Dyskusja:'' Tak jak w rozwiązaniu poprzedniego zadania, istnienie sąsiada na planszy badamy przed wywołaniem rekurencyjnym, a poprawność przejścia na początku wywołania. Służy nam do tego dodatkowy parametr 'h', który oznacza wysokość poprzedniego pola. Dlatego pierwsze wywołanie funkcji 'szukaj' ma pierwszy parametr A[i1,j1]+1 (w wariancie I). '''Uwaga!''' Funkcja ta nie zadziała, jeśli A[i1,j1]=MaxInt (czyli maksymalnej możliwej wartości typu integer). Poniżej przedstawione jest rozwiązanie bez tego mankamentu. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''function''' Zjazd2(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | '''function''' Zjazd2(M,N:integer; '''var''' A:'''array'''[1..M,1..N] '''of''' integer; i1,j1,i2,j2:integer):boolean; | ||
// M,N >= 1 | // M,N >= 1 | ||
Linia 228: | Linia 245: | ||
''Opis:'' Rozwiązanie jest bardzo podobne do poprzedniego. Różnica polega na przeniesieniu kodu z początku funkcji 'szukaj' do osobnej funkcji 'wdol'. Funkcja ta jest używana jako test dopuszczający do rekurencyjnego wywołania funkcji 'szukaj'. | ''Opis:'' Rozwiązanie jest bardzo podobne do poprzedniego. Różnica polega na przeniesieniu kodu z początku funkcji 'szukaj' do osobnej funkcji 'wdol'. Funkcja ta jest używana jako test dopuszczający do rekurencyjnego wywołania funkcji 'szukaj'. | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 3 (Wieże Hanoi z ograniczeniami)== | ==Zadanie 3 (Wieże Hanoi z ograniczeniami)== | ||
Linia 234: | Linia 251: | ||
Na wykładzie omawiane były [[Wstęp do programowania/Rekursja#wieze Hanoi|wieże Hanoi]]. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach. | Na wykładzie omawiane były [[Wstęp do programowania/Rekursja#wieze Hanoi|wieże Hanoi]]. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
* Dozwolone ruchy najlepiej reprezentować w tablicy typu TDozwRuchow = array[1..3, 1..3] of boolean, (przekątna nie ma znaczenia). | * Dozwolone ruchy najlepiej reprezentować w tablicy typu TDozwRuchow = array[1..3, 1..3] of boolean, (przekątna nie ma znaczenia). | ||
* Zastanów się, jaki warunek musi być spełniony przez tablicę dozwolonych ruchów, aby zadanie miało rozwiązanie. | * Zastanów się, jaki warunek musi być spełniony przez tablicę dozwolonych ruchów, aby zadanie miało rozwiązanie. | ||
* Użyj funkcji-otoczki do wstępnego sprawdzenia czy istnieje rozwiązanie oraz do pamiętania tablicy dozwolonych ruchów w czasie działania funkcji rekurencyjnej. | * Użyj funkcji-otoczki do wstępnego sprawdzenia czy istnieje rozwiązanie oraz do pamiętania tablicy dozwolonych ruchów w czasie działania funkcji rekurencyjnej. | ||
</div> | </div> | ||
</div> | </div> | ||
<!-- | <!-- | ||
Linia 247: | Linia 266: | ||
end; | end; | ||
--> | --> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''type''' Paleczki = 1..3; | '''type''' Paleczki = 1..3; | ||
Linia 277: | Linia 298: | ||
'''end''' | '''end''' | ||
'''else''' | '''else''' | ||
CzyDaSie:= | CzyDaSie:=true | ||
'''end''' // CzyDaSie | '''end''' // CzyDaSie | ||
'''var''' ok:boolean | '''var''' ok:boolean; | ||
i,j:integer; | |||
'''begin''' // Hanoi | '''begin''' // Hanoi | ||
ok:=true; | ok:=true; | ||
Linia 294: | Linia 316: | ||
''Omówienie:'' Zauważ, że dużo łatwiej jest rozwiązać to zadanie sformułowane w sposób ogólny, niż gdy powie się, że zabroniony jest konkretny ruch (np. 1 → 2). | ''Omówienie:'' Zauważ, że dużo łatwiej jest rozwiązać to zadanie sformułowane w sposób ogólny, niż gdy powie się, że zabroniony jest konkretny ruch (np. 1 → 2). | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Ćwiczenie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Jaki przypadek jest najgorszy i ile trzeba wykonać wtedy ruchów? | Jaki przypadek jest najgorszy i ile trzeba wykonać wtedy ruchów? | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Odpowiedź</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Najgorszy przypadek to taki, gdy przerwane jest połączenie Skąd-Dokąd w obie strony. Wtedy trzeba wykonać <math>3^{Ile}-1</math> ruchów) | Najgorszy przypadek to taki, gdy przerwane jest połączenie Skąd-Dokąd w obie strony. Wtedy trzeba wykonać <math>3^{Ile}-1</math> ruchów) | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 4 (Ustawianie hetmanów)== | ==Zadanie 4 (Ustawianie hetmanów)== | ||
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały. | Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
W tablicach logicznych pamiętamy zajętość kolumn i obu rodzajów przekątnych, kolejnego hetmana ustawiamy w kolejnym wierszu jeśli się da, jeśli nie wracamy. | W tablicach logicznych pamiętamy zajętość kolumn i obu rodzajów przekątnych, kolejnego hetmana ustawiamy w kolejnym wierszu jeśli się da, jeśli nie wracamy. | ||
Linia 316: | Linia 343: | ||
Oczywiście lepiej uogólnić na N hetmanów na szachownicy N×N. | Oczywiście lepiej uogólnić na N hetmanów na szachownicy N×N. | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''procedure''' Hetmany(N:integer); | '''procedure''' Hetmany(N:integer); | ||
// N >= 1 | // N >= 1 | ||
Linia 345: | Linia 374: | ||
'''end'''; // odstaw | '''end'''; // odstaw | ||
'''function''' wolne(k,i:integer):boolean | '''function''' wolne(k,i:integer):boolean; | ||
// 1 <= k,i <= N | // 1 <= k,i <= N | ||
'''begin''' | '''begin''' | ||
wolne:='''not''' kolumny[i] & '''not''' przekgd[k-i] & '''not''' przekdg[k+i] | wolne:='''not''' kolumny[i] & '''not''' przekgd[k-i] & '''not''' przekdg[k+i]; | ||
'''end'''; // wolne | '''end'''; // wolne | ||
Linia 357: | Linia 386: | ||
'''begin''' | '''begin''' | ||
jest:=true; | jest:=true; | ||
write('Ustawienie: ') | write('Ustawienie: '); | ||
'''for''' i:=1 '''to''' N | '''for''' i:=1 '''to''' N '''do''' write(i,':',wiersze[i],' '); | ||
writeln; | writeln; | ||
'''end'''; // wypisz | '''end'''; // wypisz | ||
Linia 383: | Linia 412: | ||
'''for''' i:=2 '''to''' 2*N '''do''' przekdg[i]:=false; | '''for''' i:=2 '''to''' 2*N '''do''' przekdg[i]:=false; | ||
jest:=false; | jest:=false; | ||
rozstaw( | rozstaw(1); | ||
'''if''' '''not''' jest '''then''' writeln('Nie znaleziono żadnego ustawienia') | '''if''' '''not''' jest '''then''' writeln('Nie znaleziono żadnego ustawienia') | ||
'''end''' // Hetmany | '''end''' // Hetmany | ||
Linia 396: | Linia 425: | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 5 (Mnożenie wielomianów)== | ==Zadanie 5 (Mnożenie wielomianów)== | ||
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki. | Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki. | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Zamiast rozwiązania naiwnego wymagającego <math>n^2</math> mnożeń zróbmy trochę lepsze (aczkolwiek nie najlepsze) polegające na podzieleniu wielomianów na dwie części. Cały pomysł polega na spostrzeżeniu, że jeśli zadane wielomiany <math>p(x)</math> i <math>q(x)</math> podzielimy na dolną i górną część<br> | Zamiast rozwiązania naiwnego wymagającego <math>n^2</math> mnożeń zróbmy trochę lepsze (aczkolwiek nie najlepsze) polegające na podzieleniu wielomianów na dwie części. Cały pomysł polega na spostrzeżeniu, że jeśli zadane wielomiany <math>p(x)</math> i <math>q(x)</math> podzielimy na dolną i górną część<br> | ||
<math>p(x) = p_l(x) + p_h(x)*x^{N/2}</math> i analogicznie | <math>p(x) = p_l(x) + p_h(x)*x^{N/2}</math> i analogicznie | ||
Linia 411: | Linia 442: | ||
Czyli potrzebujemy 3 mnożeń o połowę mniejszych wielomianów. W sumie uzyskamy liczbę mnożeń rzędu <math>n^{lg 3}</math>. Szczegóły można znaleźć w [[Sedgewick|Sedgewick Algorithms in C++]], str. 527-530. | Czyli potrzebujemy 3 mnożeń o połowę mniejszych wielomianów. W sumie uzyskamy liczbę mnożeń rzędu <math>n^{lg 3}</math>. Szczegóły można znaleźć w [[Sedgewick|Sedgewick Algorithms in C++]], str. 527-530. | ||
</div> | </div> | ||
</div> | </div> | ||
==Zadanie 6 (Suma składników)== | ==Zadanie 6 (Suma składników)== | ||
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy | Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy liczb naturalnych większych od zera ustawionych w kolejności nierosnącej. Np. dla n = 3:<br> | ||
3 = 3<br> | 3 = 3<br> | ||
3 = 2+1<br> | 3 = 2+1<br> | ||
3 = 1+1+1 | 3 = 1+1+1 | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | Użyj dodatkowej tablicy do przechowywania początków rozkładów. Uważaj, aby nie kopiować tej tablicy przy każdym wywołaniu rekurencyjnym! | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka 2</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | Funkcja rekurencyjna powinna mieć parametr wskazujący jak duże składniki mogą być użyte do rozkładu pozostałej liczby. </div> | ||
</div> | </div> | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"> | |||
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie 1</span> | |||
<div class="mw-collapsible-content" style="display:none"> | |||
'''procedure''' Suma(n:integer); | '''procedure''' Suma(n:integer); | ||
// 1 <= n | // 1 <= n | ||
Linia 452: | Linia 489: | ||
'''for''' i:=min(co,maxSkł) '''downto''' 1 '''do''' '''begin''' | '''for''' i:=min(co,maxSkł) '''downto''' 1 '''do''' '''begin''' | ||
T[ti]:=i; | T[ti]:=i; | ||
rozklad(T,ti,i, | rozklad(T,ti,co-i,i); | ||
'''end''' | '''end''' | ||
'''end''' | '''end''' | ||
Linia 465: | Linia 502: | ||
''Koszt pamięciowy:'' liniowy względem n | ''Koszt pamięciowy:'' liniowy względem n | ||
[http:// | [http://wazniak.mimuw.edu.pl/external/pimpek/modul2_19_1.html Wizualizacja] | ||
''Opis:'' Funkcja rekurencyjna 'rozkład' przegląda wszystkie nierosnące rozkłady liczby co używające składników niewiększych niż maxSkł. Ponieważ w tablicy T[1..ti] jest już nierosnący ciąg składników o sumie n-co, wydłużenie go o dowolny taki rozkład co będzie dawać poprawny rozkład n. | ''Opis:'' Funkcja rekurencyjna 'rozkład' przegląda wszystkie nierosnące rozkłady liczby co używające składników niewiększych niż maxSkł. Ponieważ w tablicy T[1..ti] jest już nierosnący ciąg składników o sumie n-co, wydłużenie go o dowolny taki rozkład co będzie dawać poprawny rozkład n. | ||
Linia 479: | Linia 516: | ||
Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | Poza wspomnianymi modyfikacjami całą procedurę 'rozkład' można by napisać w sposób ''rosnący'', tzn. zamiast generować coraz mniejsze składniki - generować coraz większe, aż osiągniemy bądź przekroczymy n. W takim wypadku składniki należałoby wypisywać w odwrotnej kolejności. | ||
</div> | </div> | ||
</div> | </div> | ||
<!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... | <!-- to zadanie tu nie pasuje, wymaga zdecydowanie rekordow z wariantami... | ||
Linia 535: | Linia 572: | ||
|} | |} | ||
<!-- to między || i pierwszą | to są parametry komórki, więc żeby wpisać w komórce kreskę, to trzeba | <!-- to między || i pierwszą | to są parametry komórki, więc żeby wpisać w komórce kreskę, to trzeba zacząć komórkę od _spacja_kreska_ :) - - > | ||
{{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none"> | {{wskazowka| 1||<div class="mw-collapsible mw-made=collapsible mw-collapsed"><div class="mw-collapsible-content" style="display:none"> | ||
W tym zadaniu chodzi o przećwiczenie metody zejść rekurencyjnych (była na wykładzie). Niestety na razie nie mamy dostatecznie ciekawych typów danych, żeby móc zapamiętać strukturę danych programu (i np. | W tym zadaniu chodzi o przećwiczenie metody zejść rekurencyjnych (była na wykładzie). Niestety na razie nie mamy dostatecznie ciekawych typów danych, żeby móc zapamiętać strukturę danych programu (i np. potem go wykonywać). Niemniej zadanie jest pouczające. Typ danych, który ma być wymyślony, to rekord z wariantami. Można uatrakcyjnić to zadanie każąc sprawdzać, czy każda użyta zmienna była wcześniej zadeklarowana i czy nie była deklarowana kilkakrotnie (tablica napisów). | ||
</div> | </div> | ||
</div>}} | </div>}} | ||
--> | --> |
Aktualna wersja na dzień 16:23, 28 maj 2020
To są zadania na rekursję.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Labirynt)
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3
Odpowiedź
Dla ciekawskich:
Zadanie 2 (Z górki na pazurki)
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa gór (każdy punkt ma podaną dodatnią wysokość). Sprawdź, czy da się przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc:
- tylko w dół lub po płaskim
- tylko w dół
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 3 (Wieże Hanoi z ograniczeniami)
Na wykładzie omawiane były wieże Hanoi. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 4 (Ustawianie hetmanów)
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały.
Wskazówka 1
Rozwiązanie 1
Zadanie 5 (Mnożenie wielomianów)
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki.
Wskazówka 1
Zadanie 6 (Suma składników)
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy liczb naturalnych większych od zera ustawionych w kolejności nierosnącej. Np. dla n = 3:
3 = 3
3 = 2+1
3 = 1+1+1
Wskazówka 1
Wskazówka 2
Rozwiązanie 1