ED-4.2-m10-1.0-Slajd15: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
ALesniewska (dyskusja | edycje)
Nie podano opisu zmian
 
Linia 4: Linia 4:




Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć).  
Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p.
 
Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p  




[[ED-4.2-m10-1.0-Slajd14 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd16 | Następny slajd >>]]
[[ED-4.2-m10-1.0-Slajd14 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd16 | Następny slajd >>]]

Aktualna wersja na dzień 12:30, 31 sie 2006

Zmienne binarne (2)

Zmienne binarne (2)


Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p.


<< Poprzedni slajd | Spis treści | Następny slajd >>