ED-4.2-m10-1.0-Slajd15: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 4: | Linia 4: | ||
Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć). | Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p. | ||
Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p | |||
[[ED-4.2-m10-1.0-Slajd14 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd16 | Następny slajd >>]] | [[ED-4.2-m10-1.0-Slajd14 | << Poprzedni slajd]] | [[ED-4.2-m10-1.0-toc|Spis treści ]] | [[ED-4.2-m10-1.0-Slajd16 | Następny slajd >>]] |
Aktualna wersja na dzień 12:30, 31 sie 2006
Zmienne binarne (2)
Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi binarnymi, zależy od typu zmiennych binarnych. Wyróżniamy dwa typy zmiennych binarnych: zmienne binarne symetryczne i zmienne binarne asymetryczne. Zmienną binarną nazywamy symetryczną, jeżeli obie wartości tej zmiennej posiadają tą samą wagę (np. płeć). Tradycyjną miarą niepodobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, jest stosunek (r + s)/p. Innymi słowy, niepodobieństwo dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (r+s) do sumarycznej liczby wszystkich zmiennych p. Łatwo można się domyśleć, że miarą podobieństwa dwóch obiektów i i j, opisanych zmiennymi binarnymi symetrycznymi, będzie stosunek (q+t)/p, tj. stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (q+t) do sumarycznej liczby wszystkich zmiennych p.