Test GR2: Różnice pomiędzy wersjami
Nie podano opisu zmian |
m Zastępowanie tekstu – „<math> ” na „<math>” |
||
(Nie pokazano 32 wersji utworzonych przez 2 użytkowników) | |||
Linia 1: | Linia 1: | ||
{| border="1" cellspacing="0" | |||
! <math>\phi</math>!! <math>\psi</math>!! <math>\psi \Rightarrow \phi</math>!! <math>(\phi \Rightarrow (\psi \Rightarrow \phi))</math>!! | |||
|- | |||
| 0 || 0 || 1 || 1 | |||
|- | |||
| 0 || 1 || 0 || 1 | |||
|- | |||
| 1 || 0 || 1 || 1 | |||
|- | |||
| 1 || 1 || 1 || 1 | |||
|} | |||
<center><math>\left| x \right|\ = \left\{ \begin{array}{rll} x & \text{ gdy }, x\geq 0 \\ -x & \text{ w przeciwnym przypadku}. | |||
\end{array}</math></center> | |||
<center><math>w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2\ |\ | |||
aw_3v_1v_3v_3v_2\ |\ bv_3v_2v_1v_3v_3v_2 \\ | |||
\begin{array}{lll} & & |\ av_1v_3v_3v_2\ |\ bv_3v_3v_2 | |||
\end{array}</math></center> | |||
oraz | |||
<center><math>w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2w_3\ |\ | |||
aw_3v_1v_3v_3v_2w_3\ |\ bv_3v_2v_1v_3v_3v_2w_3 \\ | |||
\begin{array}{lll} & & |\ av_1v_3v_3v_2w_3\ |\ bv_3v_3v_2w_3 | |||
\end{array}</math></center> | |||
Ostatecznie, gramatyka w postaci Greibach ma postać: | |||
<center><math> v_1 &\rightarrow bv_3v_2w_3v_1v_3\ |\ aw_3v_1v_3\ |\ bv_3v_2v_1v_3\ |\ av_1v_3\ |\ bv_3 \\ | |||
v_2 &\rightarrow bv_3v_2w_3v_1\ |\ aw_3v_1\ |\ bv_3v_2v_1\ |\ av_1\ |\ b \\ | |||
v_3 &\rightarrow bv_3v_2w_3\ |\ aw_3\ |\ bv_3v_2\ |\ a | |||
\\ | |||
w_3 &\rightarrow bv_3v_2w_3v_1v_3v_3v_2\ |\ | |||
aw_3v_1v_3v_3v_2\ |\ bv_3v_2v_1v_3v_3v_2 \\ | |||
\begin{array}{lll} & & |\ av_1v_3v_3v_2\ |\ bv_3v_3v_2 bv_3v_2w_3v_1v_3v_3v_2w_3 \\ | |||
& & |\ aw_3v_1v_3v_3v_2w_3\ |\ bv_3v_2v_1v_3v_3v_2w_3\ \\ | |||
& & |\ av_1v_3v_3v_2w_3\ |\ bv_3v_3v_2w_3 | |||
\end{array}</math></center> | |||
<center><math>\begin{array} {c|c|c|c|c|} Krok & dodane\quad do\quad S' & okreslenie\quad f' & dodane\quad do\quad T'\\ | |||
\hline 0 & \{q_0\} & & \emptyset\\ | |||
\hline 1 & \{q_0,q_3\} & f'(\{q_0\},a)=\{q_0,q_3\} & \emptyset\\ | |||
\hline & \{q_0,q_1\} & f'(\{q_0\},b)=\{q_0,q_1\} & \\ | |||
\hline 2 & \{q_0,q_3,q_4\} & f'(\{q_0,q_3\},a)=\{q_0,q_3,q_4\} & \{q_0,q_3,q_4\}\\ | |||
\hline & & f'(\{q_0,q_3\},b)=\{q_0,q_1\} & \\ | |||
\hline & & f'(\{q_0,q_1\},a)=\{q_0,q_3\} & \\ | |||
\hline & \{q_0,q_1,q_2\} & f'(\{q_0,q_1\},b)=\{q_0,q_1,q_2\} & \{q_0,q_1,q_2\}\\ | |||
\hline 3 & & f'(\{q_0,q_3,q_4\},a)=\{q_0,q_3,q_4\} & \\ | |||
\hline & \{q_0,q_1,q_4\} & f'(\{q_0,q_3,q_4\},b)=\{q_0,q_1,q_4\} & \{q_0,q_1,q_4\}\\ | |||
\hline & \{q_0,q_2,q_3\} & f'(\{q_0,q_1,q_2\},a)=\{q_0,q_2,q_3\} & \{q_0,q_2,q_3\}\\ | |||
\hline & & f'(\{q_0,q_1,q_2\},b)=\{q_0,q_1,q_2\} & \\ | |||
\hline 4 & & f'(\{q_0,q_1,q_4\},a)=\{q_0,q_3,q_4\} & \\ | |||
\hline & \{q_0,q_1,q_2,q_4\}, & f'(\{q_0,q_1,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \{q_0,q_1,q_2,q_4\}\\ | |||
\hline & \{q_0,q_2,q_3,q_4\} & f'(\{q_0,q_2,q_3\},a)=\{q_0,q_2,q_3,q_4\} & \{q_0,q_2,q_3,q_4\}\\ | |||
\hline & & f'(\{q_0,q_2,q_3\},b)=\{q_0,q_1,q_2\} & \\ | |||
\hline 5 & & f'(\{q_0,q_1,q_2,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | |||
\hline & & f'(\{q_0,q_1,q_2,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | |||
\hline & & f'(\{q_0,q_2,q_3,q_4\},a)=\{q_0,q_2,q_3,q_4\} & \\ | |||
\hline & & f'(\{q_0,q_2,q_3,q_4\},b)=\{q_0,q_1,q_2,q_4\} & \\ | |||
\hline \end{array} </math></center> | |||
<center><math>\begin{array} {c|c|c|c|c|} (s_0,\sharp)\mapsto (s_A,\sharp,0) & (s_0,0)\mapsto (r_0,\sharp,1) & (s_0,1)\mapsto (r_1,\sharp,1)\\ | |||
\hline (r_0,\sharp)\mapsto (s_R,\sharp,0) & (r_0,0)\mapsto (r_0',0,1) & (r_0,1)\mapsto (r_0',1,1)\\ | |||
\hline (r_0',\sharp)\mapsto (q_0,\sharp,-1) & (r_0',0)\mapsto (r_0',0,1) & (r_0',1)\mapsto (r_0',1,1)\\ | |||
\hline & (q_0,0)\mapsto (l,\sharp,-1) & (q_0,1)\mapsto (s_R,\sharp,-1)\\ | |||
\hline (r_1,\sharp)\mapsto (s_R,\sharp,0) & (r_1,0)\mapsto (r_1',0,1) & (r_1,1)\mapsto (r_1',1,1)\\ | |||
\hline (r_1',\sharp)\mapsto (q_1,\sharp,-1) & (r_1',0)\mapsto (r_1',0,1) & (r_1',1)\mapsto (r_1',1,1)\\ | |||
\hline & (q_1,0)\mapsto (s_R,\sharp,0) & (q_1,1)\mapsto (l,\sharp,-1)\\ | |||
\hline (l,\sharp)\mapsto (s_0,\sharp,1) & (l,0)\mapsto (l,0,-1) & (l,1)\mapsto (l,1,-1)\\ | |||
\hline (s_R,\sharp)\mapsto (s_R,\sharp,0) & & \\ | |||
\hline (s_A,\sharp)\mapsto (s_A,\sharp,0) & & \\ | |||
\hline \end{array} </math></center> | |||
<center><math>\begin{array} {c|c|c|c|c|} (s_0,\sharp)\mapsto (s_R,\sharp,0) & (s_1,\diamondsuit)\mapsto(s1,\diamondsuit,1)\\ | |||
\hline (s_0,0)\mapsto(s_1,\clubsuit,1) & (s_1,0) \mapsto(s_2,\diamondsuit,1)\\ | |||
\hline & (s_1,\sharp)\mapsto(s_A,\sharp,0)\\ | |||
\hline (s_2,\diamondsuit)\mapsto(s_2,\diamondsuit,1) & (s_3,0)\mapsto(s_2,\diamondsuit,1)\\ | |||
\hline (s_2,\sharp)\mapsto(s_4,\sharp,-1) & (s_3,\diamondsuit)\mapsto(s_3,\diamondsuit,1)\\ | |||
\hline (s_2,0)\mapsto(s_3,0,1) & (s_3,\sharp)\mapsto(s_R,\sharp,0)\\ | |||
\hline (s_4,0)\mapsto(s_4,0,-1) & \\ | |||
\hline (s_4,\diamondsuit)\mapsto(s_4,\diamondsuit,-1) & \\ | |||
\hline (s_4,\clubsuit)\mapsto(s_2,\clubsuit,1) & \\ | |||
\hline (s_A,\sharp)\mapsto(s_A,\sharp,0) & (s_R,\sharp)\mapsto(s_R,\sharp,0)\\ | |||
\hline \end{array} </math></center> | |||
<center><math>\begin{array} {c|c|c|c|c|} & s_0 & s_1 & s_2\\ | |||
\hline \tau _{\mathcal{A}}(1) & s_0 & s_1 & s_2\\ | |||
\hline \tau _{\mathcal{A}}(a) & s_1 & s_2 & s_2\\ | |||
\hline \tau _{\mathcal{A}}(b) & s_0 & s_0 & s_0\\ | |||
\hline \tau _{\mathcal{A}}(a^{2}) & s_2 & s_2 & s_2\\ | |||
\hline \tau _{\mathcal{A}}(ab) & s_0 & s_0 & s_2\\ | |||
\hline \tau _{\mathcal{A}}(ba) & s_1 & s_1 & s_1\\ | |||
\hline \tau _{\mathcal{A}}(b^{2}) & s_0 & s_0 & s_0\\ | |||
\hline \tau _{\mathcal{A}}(aba) & s_1 & s_1 & s_2\\ | |||
\hline ... & ... & ... & ...\\ | |||
\hline \end{array} </math></center> | |||
<center><math>\begin{array} {c|c|c|c|c|} f & s_0 & s_1 & s_2 & s_3\\ | |||
\hline a & s_1 & s_2 & s_0 & s_2\\ | |||
\hline b & s_3 & s_2 & s_2 & s_2\\ | |||
\hline \end{array} </math></center> | |||
{{algorytm|Minimalizuj2 - algorytm minimalizacji automatu | |||
wykorzystujący stabilizujący się ciąg relacji|algorytm minimalizacji automatu wykorzystujący stabilizujący się ciąg relacji| | |||
1 Wejście: <math>\mathcal{A}=(S, A, f, s_0, T)</math> - automat taki, że <math>L=L(\mathcal{A})</math>. | |||
2 Wyjście: automat minimalny <math>\mathcal{A}'=(S',A',f', s_0', | |||
T')</math> dla <math>\mathcal{A}</math>. | |||
3 <math>\overline{\rho}_1\leftarrow\approx_{\mathcal{A}}</math>; | |||
4 <math>i \leftarrow 1</math>; | |||
5 '''repeat''' | |||
6 <math>\slash \slash</math> oblicz <math>\overline{\rho}_i</math>: <math>s_1 | |||
\overline{\rho}_i s_2 \Leftrightarrow (s_1 \overline{\rho}_{i-1} | |||
s_2) \wedge (\forall a \in A\ f(s_1, a) \overline{\rho}_{i-1} | |||
f(s_2,a))</math>; | |||
7 <math>i \leftarrow i+1</math>; | |||
8 '''empty'''<math>(\overline{\rho}_i)</math> | |||
9 '''for''' '''each''' <math>(s_1,s_2)\in S\times S</math> '''do''' | |||
10 flag<math>\leftarrow</math>'''true'''; | |||
11 '''for''' '''each''' <math>a\in A</math> | |||
12 '''if''' '''not''' <math>f(s_1, a) \overline{\rho}_{i-1} f(s_2,a)</math> '''then''' | |||
13 flag<math>\leftarrow</math>'''false'''; | |||
14 '''end''' '''if''' | |||
15 '''end''' '''for''' | |||
16 '''if''' flag<nowiki>=</nowiki>'''true''' '''and''' <math>s_1 \overline{\rho}_{i-1} s_2</math> '''then''' | |||
17 <math>\overline{\rho}_{i} \leftarrow \overline{\rho}_{i} \cup \{(s_1,s_2)\}</math>; | |||
18 '''end''' '''if''' | |||
19 '''end''' '''for''' | |||
20 '''until''' <math>\overline{\rho}_i = \overline{\rho}_{i-1}</math> | |||
21 <math>S' \leftarrow S \slash \overline{\rho}_i</math>; | |||
22 '''for''' '''each''' <math>[s]_{\overline{\rho}_i} \in S \slash \overline{\rho}_i</math> '''do''' | |||
23 '''for''' '''each''' <math>a \in A</math> '''do''' | |||
24 <math>f'([s]_{\overline{\rho}_i},a) \leftarrow | |||
[f(s,a)]_{\overline{\rho}_i}</math>; | |||
25 '''end''' '''for''' | |||
26 '''end''' '''for''' | |||
27 <math>s_0' \leftarrow [s_0]_{\overline{\rho}_i}</math>; | |||
28 <math>T' \leftarrow \{[t]_{\overline{\rho}_i}:\ t \in T\}</math>; | |||
29 '''return''' <math>\mathcal{A}'=(S', A, f', s_0', T')</math>; | |||
}} | |||
{| border=1 | |||
|+ <span style="font-variant:small-caps">Uzupelnij tytul</span> | |||
|- | |||
| | |||
|| | |||
<math>s_{0} </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(1) </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(a) </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{2} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(b) </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{0} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(a^{2}) </math> || | |||
<math>s_{2} </math> || | |||
<math>s_{2} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(ab) </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(ba) </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{1} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(b^{2}) </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{0} </math> || | |||
<math>s_{0} </math> | |||
|- | |||
| | |||
<math>\tau _{\mathcal{A}}(aba) </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{1} </math> || | |||
<math>s_{2} </math> | |||
|- | |||
| | |||
... || | |||
... || | |||
... || | |||
... | |||
|- | |||
| | |||
|} | |||
<math> | |||
\begin{array}{lll} | |||
\text{b) } \lim_{x\rightarrow 2^+} (x-2)e^{\frac{1}{x-2}}&=&\lim_{x\rightarrow | |||
2^+} \frac{e^{\frac{1}{x-2}}}{(x-2)^{-1}}\begin{array} {c}\left[\frac{\infty}{\infty}\right]\\=\\H\end{array} | |||
\lim_{x\rightarrow 2^+} | |||
\frac{-(x-2)^{-2}e^{\frac{1}{x-2}}}{-(x-2)^{-2}}=\\ | |||
&=&\lim_{x\rightarrow 2^+} e^{\frac{1}{x-2}}=+\infty; | |||
\end{array} | |||
</math><br> | |||
alalalalaa | |||
alala | |||
{| border="1" cellspacing="0" | {| border="1" cellspacing="0" | ||
! !! Złożoność czasowa !! Złożoność pamięciowa | ! !! Złożoność czasowa !! Złożoność pamięciowa | ||
Linia 50: | Linia 305: | ||
{| border="1" | {| border="1" | ||
! <math>\ | ! <math>\text{p}</math>!! <math>\text{q}</math>!! <math>\text{p} \wedge \text{q}</math>!! <math>\neg( p \wedge q)</math>!! <math>\neg p</math>!! <math>\neg q</math>!! <math>\neg p \vee \neg q</math> | ||
|- | |- | ||
| 0 || 0 || 0|| 1|| 1|| 1|| 1 | | 0 || 0 || 0|| 1|| 1|| 1|| 1 | ||
Linia 63: | Linia 318: | ||
{| border="1" | {| border="1" | ||
! <math>\ | ! <math>\text{p}</math>!! <math>\text{q}</math>!! <math>\text{r}</math>!!<math>(\text{p} \wedge \text{q})</math>!! <math>( p \wedge r)</math>!! <math>( q \wedge \neg r)</math>!! <math>(p \wedge r) \vee (q \wedge \neg r)</math>!! <math>(p \wedge q) \Rightarrow ((p \wedge r) \vee (q \wedge \neg r))</math> | ||
|- | |- | ||
| 0|| 0|| 0|| 0|| 0|| 0|| 0|| 1 | | 0|| 0|| 0|| 0|| 0|| 0|| 0|| 1 | ||
Linia 92: | Linia 347: | ||
| 2|| 0|| 0|| 1|| 0|| || <math>\neg (p \Rightarrow q)</math> | | 2|| 0|| 0|| 1|| 0|| || <math>\neg (p \Rightarrow q)</math> | ||
|- | |- | ||
| 3|| 0|| 0|| 1|| 1|| || <math>\ | | 3|| 0|| 0|| 1|| 1|| || <math>\text{p}</math> | ||
|- | |- | ||
| 4|| 0|| 1|| 0|| 0|| || <math>\neg (q \Rightarrow p)</math> | | 4|| 0|| 1|| 0|| 0|| || <math>\neg (q \Rightarrow p)</math> | ||
|- | |- | ||
| 5|| 0|| 1|| 0|| 1|| || <math>\ | | 5|| 0|| 1|| 0|| 1|| || <math>\text{q}</math> | ||
|- | |- | ||
| 6|| 0|| 1|| 1|| 0|| || <math>XOR</math> | | 6|| 0|| 1|| 1|| 0|| || <math>XOR</math> | ||
Linia 121: | Linia 376: | ||
{| border="1" | {| border="1" | ||
! <math>\ | ! <math>\text{p}</math>!! <math>\text{q}</math>!! <math>\text{r}</math>!!<math>(p \leftrightarrow q)</math>!! <math>(p \leftrightarrow q) \leftrightarrow r</math>!! <math>(q \leftrightarrow r)</math>!! <math>p \leftrightarrow (q \leftrightarrow r)</math> | ||
|- | |- | ||
| 0|| 0|| 0|| 1|| 0|| 1|| 0 | | 0|| 0|| 0|| 1|| 0|| 1|| 0 | ||
Linia 142: | Linia 397: | ||
{| border="1" | {| border="1" | ||
! <math>\ | ! <math>\text{p}</math>!! <math>\text{q}</math>!! <math>\text{r}</math>!!<math>\circ (p, q, r)</math> | ||
|- | |- | ||
| 0|| 0|| 0|| 0 | | 0|| 0|| 0|| 0 | ||
Linia 163: | Linia 418: | ||
{| border="1" | {| border="1" | ||
! <math>\ | ! <math>\text{p}</math>!! <math>\text{q}</math>!! <math>\text{r}</math>!!<math>f_{p \rightarrow _(q \rightarrow r)}</math> | ||
|- | |- | ||
| 0|| 0|| 0|| 1 | | 0|| 0|| 0|| 1 | ||
Linia 200: | Linia 455: | ||
----------------------------------------------------------- | ----------------------------------------------------------- | ||
Nagroda Goedla<br>[[Nagroda Goedla|Zobacz Nagroda Goedla]]]] | |||
Nagroda Turinga<br>[[Nagroda Turinga|Zobacz Nagroda Turinga]] | |||
Nagroda Knutha<br>[[Nagroda Knutha|Zobacz Nagroda Knutha]] | |||
<center><math>g(C)=\begin{cases} C\cup \{f(C')\} C \end{cases} | |||
</math></center> | |||
<math>g(C)=\left\{\begin{align} C\cup \{f(C')\}\\C\end{align} \right</math> | |||
<math>c\forall d\; c\in C \land d\in C \land c\sqsubseteq d\implies c\sqsubseteq' d, | |||
(C,\sqsubseteq) \preccurlyeq (C',\sqsubseteq') \iff C\subset C' \land \left\{\begin{align} \forall c \forall d\; &(c\in C\land d\in C) \implies (c\sqsubseteq d \iff c\sqsubseteq' d) \text{ oraz }\\ | |||
\forall c \forall d\; &(c\in C\land d\in C'\setminus C) \implies c\sqsubseteq' d \end{align} \right</math> | |||
<math>h(0, a) = f(a)</math> dla każdego <math>a \in A \\h(n', a) = g(h(n, a), n, a)</math> dla każdego <math>a \in A</math> i <math>n \in \mathbb{N}</math> | |||
</math></ | |||
<math> | <math>e(0, a) = f(a)</math> dla każdego <math>a \in A \\ e(g(n, a), n, a)</math> dla każdego <math>a \in A</math> i <math>n \in m</math> |
Aktualna wersja na dzień 22:16, 11 wrz 2023
0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | |
1 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 |
oraz
Ostatecznie, gramatyka w postaci Greibach ma postać:
Algorytm Minimalizuj2 - algorytm minimalizacji automatu wykorzystujący stabilizujący się ciąg relacji
1 Wejście: - automat taki, że . 2 Wyjście: automat minimalny dla . 3 ; 4 ; 5 repeat 6 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle \slash \slash} oblicz : ; 7 ; 8 empty 9 for each do 10 flagtrue; 11 for each 12 if not then 13 flagfalse; 14 end if 15 end for 16 if flag=true and then 17 ; 18 end if 19 end for 20 until 21 Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle S' \leftarrow S \slash \overline{\rho}_i} ; 22 for each Parser nie mógł rozpoznać (nieznana funkcja „\slash”): {\displaystyle [s]_{\overline{\rho}_i} \in S \slash \overline{\rho}_i} do 23 for each do 24 ; 25 end for 26 end for 27 ; 28 ; 29 return ;
|| || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
|| || || | |
... || ... || ... || ... | |
alalalalaa
alala
Złożoność czasowa | Złożoność pamięciowa | |
---|---|---|
Maszyna dodająca | ||
Maszyna rozpoznająca |
0 | 1 | ... | ... | |
---|---|---|---|---|
Cell1 | Cell2 |
0 | 1 | ||
---|---|---|---|
0 | 1 | 1 | |
1 | 0 | 1 |
0 | 1 | |
1 | 0 |
0 | 1 | ||
---|---|---|---|
0 | 0 | 0 | |
1 | 0 | 1 |
0 | 1 | ||
---|---|---|---|
0 | 0 | 1 | |
1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
Numer funkcji |
||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 0 | 1 | ||
2 | 0 | 0 | 1 | 0 | ||
3 | 0 | 0 | 1 | 1 | ||
4 | 0 | 1 | 0 | 0 | ||
5 | 0 | 1 | 0 | 1 | ||
6 | 0 | 1 | 1 | 0 | ||
7 | 0 | 1 | 1 | 1 | ||
8 | 1 | 0 | 0 | 0 | ||
9 | 1 | 0 | 0 | 1 | ||
10 | 1 | 0 | 1 | 0 | ||
11 | 1 | 0 | 1 | 1 | ||
12 | 1 | 1 | 0 | 0 | ||
13 | 1 | 1 | 0 | 1 | ||
14 | 1 | 1 | 1 | 0 | ||
15 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
0 | 1 | 2 | ||
---|---|---|---|---|
0 | 2 | 2 | 2 | |
1 | 0 | 2 | 2 | |
2 | 0 | 1 | 2 |
Nagroda Goedla
Zobacz Nagroda Goedla]]
Nagroda Turinga
Zobacz Nagroda Turinga
Nagroda Knutha
Zobacz Nagroda Knutha
Parser nie mógł rozpoznać (błąd składni): {\displaystyle g(C)=\left\{\begin{align} C\cup \{f(C')\}\\C\end{align} \right}
Parser nie mógł rozpoznać (błąd składni): {\displaystyle c\forall d\; c\in C \land d\in C \land c\sqsubseteq d\implies c\sqsubseteq' d, (C,\sqsubseteq) \preccurlyeq (C',\sqsubseteq') \iff C\subset C' \land \left\{\begin{align} \forall c \forall d\; &(c\in C\land d\in C) \implies (c\sqsubseteq d \iff c\sqsubseteq' d) \text{ oraz }\\ \forall c \forall d\; &(c\in C\land d\in C'\setminus C) \implies c\sqsubseteq' d \end{align} \right}
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\h(n', a) = g(h(n, a), n, a)}
dla każdego i
dla każdego Parser nie mógł rozpoznać (błąd składni): {\displaystyle a \in A \\ e(g(n, a), n, a)}
dla każdego i