GKIW Moduł 4 - Przekształcenia geometryczne: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 395: | Linia 395: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M4_Slajd36_v4.png|thumb|500px]] | ||
|valign="top"|Najprostszym rozwiązaniem jest algorytm iteracyjny powiększający w każdym kroku bieżący kąt o zadany przyrost. Niestety takie rozwiązanie prowadzi do powstania widocznych na tarczy zegara błędów już po kilkudziesięciu godzinach. | |valign="top"|Najprostszym rozwiązaniem jest algorytm iteracyjny powiększający w każdym kroku bieżący kąt o zadany przyrost. Niestety takie rozwiązanie prowadzi do powstania widocznych na tarczy zegara błędów już po kilkudziesięciu godzinach. | ||
|} | |} | ||
Linia 409: | Linia 409: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika: | |width="500px" valign="top"|[[Grafika:GKIW_M4_Slajd38_v4.png|thumb|500px]] | ||
|valign="top"|Zadanie może być tak zrealizowane, aby błąd nie powiększał się. | |valign="top"|Zadanie może być tak zrealizowane, aby błąd nie powiększał się. | ||
Wersja z 22:28, 27 lis 2007
Wykład
![]() |
![]() |
![]() |
Można zaproponować pewien minimalny zestaw operacji: symetrie (względem osi układu współrzędnych i środkowa), obroty, przesunięcie (translacja), skalowanie oraz pochylenie. |
![]() |
![]() |
![]() |
![]() |
![]() |
Pochylenie jest rzadziej stosowanym przekształceniem. Daje możliwość zniekształcenia figury. Nie zachowuje odległości punktów. Figura i jej obraz w tym przekształceniu nie są podobne. |
![]() |
![]() |
Macierze opisujące symetrie płaszczyznowe względem pozostałych dwóch płaszczyzn (XOY i YOZ) mają analogiczną postać ze zmienionym znakiem przy 1 w odpowiedniej kolumnie. |
![]() |
Podobnie macierze opisujące symetrie osiowe względem pozostałych dwóch osi (OY i OZ) mają analogiczną postać ze zmienionymi znakami. |
![]() |
![]() |
Przesunięcie w układzie trójwymiarowym odbywa się w sposób analogiczny do przesunięcia na płaszczyźnie. |
![]() |
![]() |
Obiekt na rysunku został obrócony o kat wokół osi OX. |
![]() |
Obiekt na rysunku został obrócony o kat wokół osi OY |
![]() |
Obiekt na rysunku został obrócony o kat wokół osi OZ. |
![]() |
Rysunek pokazuje wynik pierwszej operacji – przesunięcia. Zadana oś obrotu zawiera teraz przekątną prostopadłościanu o bokach A, B, C. Ułatwi to definicje kątów obrotu. |
![]() |
Po zrealizowaniu obrotu wokół OX prosta znalazła się na płaszczyźnie XOZ. |
![]() |
Po zrealizowaniu obrotu wokół OY prosta pokryje się z osią OX układu współrzędnych. Jednocześnie odpowiednio dobrane operacje zapewniły zgodność zwrotów obu osi. |
![]() |
Teraz można wreszcie wykonać obrót o kąt wokół prostej co, dzięki odpowiednim operacjom wstępnym, odpowiada obrotowi o kąt wokół osi OX układu współrzędnych. |
![]() |
Jeśli przeanalizujemy algorytm naiwny, to okaże się, że wraz z powiększaniem wartości kąta dodajemy błędy. Błąd się nakłada wraz z postępowaniem obliczeń. |
![]() |
Suma i iloczyn są zdefiniowane tak jak na rysunku.
Dodawanie kwaternionów jest operacją łączną i przemienną. Mnożenie kwaternionów jest operacją łączną i nie jest operacją przemienną |
Literatura
![]() |