GKIW Moduł 8 - Modelowanie oświetlenia: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 46: | Linia 46: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_06.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:GKIW_M8_Slajd_06.png|thumb|500px]] | ||
|valign="top"|Najstarszy, z praktycznie wykorzystywanych w grafice komputerowej modeli odbicia, zaproponował Bui Tuong Phong w 1975 roku Model Phonga jest modelem eksperymentalnym, nieuzasadnionym fizycznie i niespełniającym zasady zachowania energii. Mimo to jest, chyba, najczęściej stosowanym modelem odbicia w grafice komputerowej, gdyż pozwala szybko uzyskać rysunki o wystarczająco realistycznych barwach. W literaturze są opisywane metody poprawy modelu Phonga, aby spełniał on zasadę zachowania energii. | |valign="top"|Najstarszy, z praktycznie wykorzystywanych w grafice komputerowej modeli odbicia, zaproponował Bui Tuong Phong w 1975 roku. Model Phonga jest modelem eksperymentalnym, nieuzasadnionym fizycznie i niespełniającym zasady zachowania energii. Mimo to jest, chyba, najczęściej stosowanym modelem odbicia w grafice komputerowej, gdyż pozwala szybko uzyskać rysunki o wystarczająco realistycznych barwach. W literaturze są opisywane metody poprawy modelu Phonga, aby spełniał on zasadę zachowania energii. | ||
Pierwszy składnik wzoru opisuje światło otoczenia (tła). Zakłada się, że jest ono rozproszone i bezkierunkowe oraz, że na skutek wielokrotnych odbić pada jednakowo pod wszystkimi kierunkami na rozpatrywane powierzchnie. Oczywiście również Ia jest jednakowe dla wszystkich obiektów. | Pierwszy składnik wzoru opisuje światło otoczenia (tła). Zakłada się, że jest ono rozproszone i bezkierunkowe oraz, że na skutek wielokrotnych odbić pada jednakowo pod wszystkimi kierunkami na rozpatrywane powierzchnie. Oczywiście również <math>Ia</math> jest jednakowe dla wszystkich obiektów. | ||
Drugi składnik opisuje odbicie rozproszone tak zwane lambertowskie. Powierzchnie matowe; rozpraszające światło jednakowo we wszystkich kierunkach opisane są prawem Lamberta, zgodnie z którym światłość promieniowania odbitego jest proporcjonalne do kosinusa kata padania. Oczywiście rzeczywiste powierzchnie rozpraszające zachowują się zgodnie z tym prawem tylko w pewnym zakresie kąta. Niemniej jednak taki opis odbicia rozproszonego jest najczęściej stosowany w modelach odbicia. | Drugi składnik opisuje odbicie rozproszone tak zwane lambertowskie. Powierzchnie matowe; rozpraszające światło jednakowo we wszystkich kierunkach opisane są prawem Lamberta, zgodnie z którym światłość promieniowania odbitego jest proporcjonalne do kosinusa kata padania. Oczywiście rzeczywiste powierzchnie rozpraszające zachowują się zgodnie z tym prawem tylko w pewnym zakresie kąta. Niemniej jednak taki opis odbicia rozproszonego jest najczęściej stosowany w modelach odbicia. | ||
Trzeci składnik opisuje odbicie kierunkowe (zwierciadlane). Maksimum natężenia promieniowania | Trzeci składnik opisuje odbicie kierunkowe (zwierciadlane). Maksimum natężenia promieniowania światła odbitego występuje dla zerowego kąta natomiast potęga <math>n</math> we wzorze charakteryzuje właściwości odbiciowe danego materiału. | ||
Warto jeszcze zwrócić uwagę na współczynnik tłumienia źródła światła. Wiemy z fizyki, że strumień światła pochodzący z punktowego źródła światła maleje z kwadratem odległości jaką przebywa. Zastosowanie tej reguły w modelu odbicia Phonga nie daje, niestety, w praktyce dobrych rezultatów. Dla dużych odległości od źródła zmiany są zbyt mało zauważalne, z kolei dla małych odległości zmiany występują zbyt szybko. Okazało się, że w praktyce dobre rezultaty można uzyskać dla współczynnika postaci <math>f_{att}=1/(c+r)</math> gdzie c jest pewną stałą. | Warto jeszcze zwrócić uwagę na współczynnik tłumienia źródła światła. Wiemy z fizyki, że strumień światła pochodzący z punktowego źródła światła maleje z kwadratem odległości jaką przebywa. Zastosowanie tej reguły w modelu odbicia Phonga nie daje, niestety, w praktyce dobrych rezultatów. Dla dużych odległości od źródła zmiany są zbyt mało zauważalne, z kolei dla małych odległości zmiany występują zbyt szybko. Okazało się, że w praktyce dobre rezultaty można uzyskać dla współczynnika postaci <math>f_{att}=1/(c+r)</math> gdzie <math>c</math> jest pewną stałą. | ||
|} | |} |
Wersja z 22:55, 24 lis 2007
Wykład
![]() |
![]() |
![]() |
![]() |
Literatura
![]() |