Zaawansowane algorytmy i struktury danych/Wykład 6: Różnice pomiędzy wersjami
Linia 1: | Linia 1: | ||
== Abstrakt == | == Abstrakt == | ||
− | |||
− | |||
W wykładzie tym zajmiemy się problemem obliczania odległości w grafie między wszystkimi parami wierzchołków w grafie ważonym | W wykładzie tym zajmiemy się problemem obliczania odległości w grafie między wszystkimi parami wierzchołków w grafie ważonym | ||
skierowanym <math>G=(V,E)</math>. Przedstawimy trzy algorytmy rozwiązujące ten problem: | skierowanym <math>G=(V,E)</math>. Przedstawimy trzy algorytmy rozwiązujące ten problem: | ||
Linia 7: | Linia 5: | ||
* algorytm Floyda-Warshalla, działający w czasie <math>O(|V|^3)</math>, | * algorytm Floyda-Warshalla, działający w czasie <math>O(|V|^3)</math>, | ||
* algorytm Johnsona, działający w czasie <math>O(|V|^2 \log |V| + |V||E|)</math>. | * algorytm Johnsona, działający w czasie <math>O(|V|^2 \log |V| + |V||E|)</math>. | ||
− | |||
== Problem najkrótszych ścieżek między wszystkimi parami wierzchołków == | == Problem najkrótszych ścieżek między wszystkimi parami wierzchołków == |
Wersja z 09:30, 19 lip 2007
Abstrakt
W wykładzie tym zajmiemy się problemem obliczania odległości w grafie między wszystkimi parami wierzchołków w grafie ważonym skierowanym
. Przedstawimy trzy algorytmy rozwiązujące ten problem:- algorytm wykorzystujący mnożenie macierzy, działający w czasie ,
- algorytm Floyda-Warshalla, działający w czasie ,
- algorytm Johnsona, działający w czasie .
Problem najkrótszych ścieżek między wszystkimi parami wierzchołków
Problem najkrótszych ścieżek między wszystkimi parami wierzchołków można rozwiązać, wykonując algorytmu Dijkstry. Najszybsza implementacja algorytmu Dijskstry wykorzystująca kopce Fibonacciego działa w czasie , co daje nam algorytm rozwiązujący problem policzenia odległości między wszystkimi parami wierzchołków, działający w czasie .
razy algorytm dla problemu najkrótszych ścieżek z jednego wierzchołka. Jeżeli w grafie wagi krawędzi są nieujemne to możemy użyćJednakże tego rozwiązania nie możemy użyć, jeżeli w grafie wagi krawędzi mogą być ujemne. W takim przypadku możemy użyć algorytm Bellmana-Forda. Otrzymamy wtedy algorytm działający w czasie . W rozdziale tym zaprezentujemy bardziej efektywne rozwiązania dla tego problemu.
W rozdziale tym będziemy zakładać, że algorytmy na wejściu otrzymują macierz wag rozmiaru reprezentującą wagi krawędzi -wierzchołkowego grafu . Dla macierzy tej zachodzi:
W problemie najkrótszych ścieżek między wszystkimi parami wierzchołków chcemy wyznaczyć macierz rozmiaru , taką że jest równe odległości z wierzchołka do wierzchołka . Chcemy także wyznaczyć dla każdego wierzchołka drzewo najkrótszych ścieżek ukorzenione w . Podobnie jak w poprzednim rozdziale drzewo możemy kodować dla każdego wierzchołka przy pomocy funkcji poprzedników . Ponieważ tutaj interesuje nas wiele drzew, łatwiej będzie nam używać macierzy poprzedników . Macierz tą definiujemy używając funkcji w następujący sposób:
W pozostałej części tego wykładu zajmiemy się tylko wyznaczaniem macierzy odległości . Zadaniu 3 do tego wykładu polega na pokazaniu, jak znając odległości w grafie policzyć drzewo najkrótszych ścieżek w czasie . Tak więc drzew możemy wyliczyć w czasie . Czas ten jest mniejszy niż czas działania wszystkich prezentowanych w tym wykładzie algorytmów, więc bez straty ogólności, a zyskując na prostocie prezentacji, możemy ograniczyć się tylko do wyznaczenia macierzy odległości .
Co więcej, będziemy zakładać, że w grafie nie ma ujemnych cykli. Ujemne cykle można wykryć w czasie przy użyciu Algorytmu Bellmana-Forda. Zobacz Zadanie 3 do Wykładu 4.
Najkrótsze ścieżki i mnożenie macierzy
Iloczyn odległości i jego właściwości
Załóżmy, że dane mamy dwie macierze wag oraz rozmiaru . Dla macierzy tych definiujemy operację iloczyn odległości, której wynikiem jest także macierz rozmiaru , zdefiniowana jako:
(1)
Wniosek 1
Wniosek ten jest przedstawiony na poniższej animicji, gdzie zostały zaznaczone dwa zbiory ścieżek, pierwszy, zaznaczony na zielono, reprezentowany przez macierz
oraz graf , oraz drugi, zaznaczony na niebiesko, reprezentowany przez macierz oraz graf . W wyniku wykonania mnożenia otrzymujemy macierz oraz graf <flash>file=Zasd_ilustr_f.swf|width=600|height=500</flash>
Pokażemy teraz, że produkt odległości jest operacją łączną.
Lemat 2
Dowód

Co więcej, produkt odległości jest przemienny względem dodawania.
Lemat 3
oraz
Dowód

Zdefiniujmy macierz rozmiaru jako:
Macierz ta jest jedynką dla iloczynu odległości.
Lemat 4
Dowód
Pomysł algorytmu
Łączność iloczynu odległości ma dla nas bardzo ważne konsekwencje i pozwoli nam na konstrukcję algorytmu obliczania odległości w grafie między wszystkimi parami wierzchołków, działającego w czasie macierzą wag grafu . Rozważmy macierz zdefiniowaną jako:
. Niech będzie
Pokażemy teraz, że macierz
opisuje odległości między wierzchołkami grafu, ale tylko dla ścieżek używających nie więcej niż krawędzi.Lemat 5
Dowód

Zajmiemy się teraz konstrukcją algorytmu obliczającego najkrótsze ścieżki w grafie. W tym celu będziemy musieli jeszcze udowodnić następujące dwa lematy.
Lemat 6
Dowód

Algorytm
Zauważmy, że iloczyn odległości dwóch macierzy możemy policzyć w czasie
wykorzystując następujący algorytm.
Algorytm Mnożenia macierzy odległości
MNOŻENIE-ODLEGŁOŚCI1 macierz rozmiaru 2 for to do 3 for to do 4 begin 5 6 for to do 7 8 end 9 return E
Ponieważ operacja iloczynu odległości jest łączna, możemy wykorzystać algorytm szybkiego potęgowania i policzyć odległości przy pomocy następującego algorytmu.
Algorytm Algorytm obliczania odległości między wszystkimi parami wierzchołków I
ODLEGŁÓŚCI-I1 2 3 while do 4 begin 5 MNOŻENIE-ODLEGŁOŚCI 6 7 end 8 return
Poprawność tego algorytmu wynika wprost z Lematu 6 ponieważ na zakończenie algorytmu i .
Algorytm Floyda-Warshalla
W algorytmie Floyda-Warshalla wykorzystamy inną cechę najkrótszych ścieżek niż ta użyta w algorytmie z wykorzystaniem iloczynu odległości. W poprzednim algorytmie konstruowaliśmy coraz dłuższe ścieżki, natomiast tutaj będziemy konstruować ścieżki przechodzące przez coraz większy zbiór wierzchołków. Wierzchołkiem wewnętrznym ścieżki jest każdy wierzchołek na ścieżce różny od jej początku i końca .
Niech zbiorem wierzchołków grafu
będzie . Niech dla oznacza najmniejszą wagę ścieżki z do spośród ścieżek, których wierzchołki wewnętrzne należą do zbioru . Pokażemy następujący rekurencyjny wzór na .Lemat 7
(2)
Dowód
Niech będzie najkrótszą ścieżką z do , której wierzchołki wewnętrzne należą do zbioru . Mamy dwa przypadki:
- Wierzchołek nie leży na ścieżce . Wtedy zachodzi . Ponieważ jest najkrótszą ścieżką, to także i powyższy wzór zachodzi.
- Jeżeli wierzchołek
Wykorzystując wzór (2) możemy skonstruować następujący algorytm, obliczający w czasie odległości między wszystkimi parami wierzchołków.
Algorytm Algorytm Floyda-Warshalla
ODLEGŁÓŚCI-II1 , 2 for to do 3 for to do 4 for to do 5 6 return
Algorytm Johnsona
W algorytmie Johnsona wykorzystamy spostrzeżenie uczynione przez nas na początku wykładu, że odległości w grafie, w którym wszystkie wagi krawędzi są dodatnie, można obliczyć korzystając z algorytmu Dijkstry w czasie . Pokażemy tutaj, jak zmienić wagi w grafie tak, aby stały się one dodatnie, przy zachowaniu najkrótszych ścieżek.
Niech będzie dany graf skierowany
wraz z funkcją wagową . Niech funkcja będzie dowolną funkcją ze zbioru wierzchołków w liczby rzeczywiste. Dla funkcji oraz definiujmy nową funkcję wagową oznaczoną w następujący sposób:(3)
Oznaczmy, przez
odległości w grafie dla funkcji wagowej oraz przez odległości w grafie dla funkcji wagowej .Lemat 8
Dowód
Widzimy więc, że zmiana długości ścieżki zależy tylko od jej końców. Otrzymujemy stąd wprost dwa wnioski.
Wniosek 9
Wniosek 10
Dowód

Funkcję nazwiemy potencjałem jeżeli zachodzi:
(4)
Pokażemy teraz, jak wyznaczyć funkcję potencjału
dla grafu . Rozważmy następujący algorytm:Algorytm Algorytm obliczania potencjału
OBLICZ-POTENCJAŁBELLMAN-FORD 6 if then 7 return (graf zawiera cykl ujemnej długości) 8 return ( obliczone w algorytmie Bellmana-Forda jest potencjałem)1 nowy wierzchołek 2 3 4 5
Działanie tego algorytmu przedstawione jest na poniższej animacji. <flash>file=Zasd_ilustr_c.swf |width=600|height=300</flash>
Lemat 11
Dowód
Zakładamy teraz, że graf
nie zawiera cyklu o ujemnej wadze, wtedy wartości jako odległości w grafie spełniają:
Innymi słowy:

Powyższy lemat jest ostatnim składnikiem potrzebnym nam do konstrukcji algorytmu Johnsona.
Algorytm Algorytm Johnsona
JOHNSONOBLICZ-POTENCJAŁ 1 if then return 3 for każda krawędź do 4 5 for każdy wierzchołek do 6 = DIJKSTRA 7 for każdy wierzchołek do 8 9 return1
Poprawność tego algorytmu wynika wprost z Lematu 11. Czas działania algorytmu jest równy sumie czasu działania algorytmu Bellmana-Forda i czasu potrzebnego na wywołań algorytmu Dijkstry, co daje całkowity czas .