Zaawansowane algorytmy i struktury danych/Wykład 5
Abstrakt
Pierwsza część tego wykładu poświęcona będzie problemowi obliczania najkrótszych ścieżek w grafie z jednego źródła w przypadku, w którym wagi krawędzi mogą być ujemne. Zaprezentujemy algorytm Bellmana-Forda, który rozwiązuje ten problem w czasie . W drugiej części zajmiemy się problemem obliczania odległości między wszystkimi parami wierzchołków. Pokażemy związki tego problemu z mnożeniem macierzy.
Algorytm Bellmana-Forda
Algorytm Bellmana-Forda służy do rozwiązania problemu
znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi
mogą być ujemne. W problemie tym mamy dany graf
i funkcję wagową . Algorytm
Bellmana-Forda wylicza dla zadanego wierzchołka , czy
istnieje w grafie cykl o ujemnej wadze osiągalny z
. Jeżeli taki cykl nie istniej to algorytm oblicza
najkrótsze ścieżki z do wszystkich pozostałych
wierzchołków wraz z ich wagami.
Relaksacja
Podobnie ja to było w Algorytmie Dijkstry użyjemy metody relaksacji. Metoda ta polega na tym, że w trakcie działania algorytmu dla każdego wierzchołka utrzymujemy wartość będącą górnym ograniczeniem wagi najkrótszej ścieżki ze do . W algorytmie utrzymywać będziemy także dla każdego wierzchołka wskaźnik wskazujący na poprzedni wierzchołek przez, który prowadzi dotychczas znaleziona najkrótsza ścieżka.
Na początku wielkości te inicjujemy przy pomocy następującej procedury:
Algorytm Inicjalizacja algorytmu najkrótszych ścieżek
INICJALIZUJ for każdy wierzchołek do
Ustalone przez tą procedure wartości są dobrymi ograniczeniami
górnymi na odległości.
relaksacja|Relaksacja]] krawędzi polega na sprawdzeniu, czy przechodząc krawędzią z do , nie otrzymamy krótszej ścieżki z do niż ta dotychczas znaleziona. Jeżeli tak to aktualizowane są także wartości i . W celu relaksacji krawędzi używamy procedury