Zaawansowane algorytmy i struktury danych/Wykład 5: Różnice pomiędzy wersjami
Nie podano opisu zmian |
m (Zastępowanie tekstu – „<math> ” na „<math>”) |
||
(Nie pokazano 5 wersji utworzonych przez 3 użytkowników) | |||
Linia 32: | Linia 32: | ||
* dla każdego wierzchołka <math>v\in V'</math> jedyna ścieżka z <math>s</math> do <math>v</math> w grafie <math>G'</math> jest najkrótszą ścieżką z <math>s</math> do <math>v</math> w grafie <math>G</math>. | * dla każdego wierzchołka <math>v\in V'</math> jedyna ścieżka z <math>s</math> do <math>v</math> w grafie <math>G'</math> jest najkrótszą ścieżką z <math>s</math> do <math>v</math> w grafie <math>G</math>. | ||
W naszych algorytmach drzewo najkrótszych ścieżek będziemy reprezentować jako {{kotwica|funkcja_poprzedników|'''funkcję poprzedników'''}} <math>\pi:V \to V</math> określającą poprzednika wierzchołka <math>v</math> w drzewie najkrótszych ścieżek. Drzewo najkrótszych ścieżek <math>G_{\pi}=(V_{\pi},E_{\pi})</math> możemy uzyskać z <math>\pi</math> w następujący sposób: | W naszych algorytmach drzewo najkrótszych ścieżek będziemy reprezentować jako {{kotwica|funkcja_poprzedników|'''funkcję poprzedników'''}} <math>\pi:V \to V</math>, określającą poprzednika wierzchołka <math>v</math> w drzewie najkrótszych ścieżek. Drzewo najkrótszych ścieżek <math>G_{\pi}=(V_{\pi},E_{\pi})</math> możemy uzyskać z <math>\pi</math> w następujący sposób: | ||
{{wzor2|1= | {{wzor2|1= | ||
<math> V_{\pi} = \{v \in V : \pi(v) \neq NIL\} \cup \{s\} | <math>V_{\pi} = \{v \in V : \pi(v) \neq NIL\} \cup \{s\}</math>, | ||
</math> | |||
}} | }} | ||
Linia 46: | Linia 45: | ||
== Algorytm Bellmana-Forda == | == Algorytm Bellmana-Forda == | ||
'''Algorytm Bellmana-Forda''' służy do rozwiązania problemu znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi mogą być ujemne. W problemie tym mamy dany graf <math>G=(V,E)</math> i funkcję wagową <math>w:E \to \mathcal{R}</math>. Algorytm Bellmana-Forda wylicza dla zadanego wierzchołka <math>s</math>, czy istnieje w grafie <math>G</math> cykl o ujemnej wadze osiągalny z <math>s</math>. Jeżeli taki cykl nie istnieje | '''Algorytm Bellmana-Forda''' służy do rozwiązania problemu znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi mogą być ujemne. W problemie tym mamy dany graf <math>G=(V,E)</math> i funkcję wagową <math>w:E \to \mathcal{R}</math>. Algorytm Bellmana-Forda wylicza dla zadanego wierzchołka <math>s</math>, czy istnieje w grafie <math>G</math> cykl o ujemnej wadze osiągalny z <math>s</math>. Jeżeli taki cykl nie istnieje, algorytm oblicza najkrótsze ścieżki z <math>s</math> do wszystkich pozostałych | ||
wierzchołków wraz z ich wagami. | wierzchołków wraz z ich wagami. | ||
=== Relaksacja === | === Relaksacja === | ||
Podobnie | Podobnie jak to było w [[Algorytmy i struktury danych/ASD Moduł 11#algorytm_dijkstry|Algorytmie Dijkstry]], użyjemy metody relaksacji. W metodzie tej utrzymujemy dla każdego wierzchołka <math>v \in V</math> wartość <math>d(v)</math>, będącą górnym ograniczeniem wagi najkrótszej ścieżki z <math>s</math> do <math>v</math>. W algorytmie utrzymywać będziemy także dla każdego wierzchołka <math>v</math> wskaźnik <math>\pi(v)</math> wskazujący na poprzedni wierzchołek, przez który prowadzi dotychczas znaleziona najkrótsza ścieżka. Na początku wielkości te inicjujemy przy pomocy następującej procedury: | ||
Linia 81: | Linia 80: | ||
=== Algorytm === | === Algorytm === | ||
Po przypomnieniu czym była relaksacja gotowi jesteśmy na zapisanie algorytmu Bellmana-Forda, a następnie udowodnienie jego poprawności. | Po przypomnieniu czym była relaksacja, gotowi jesteśmy na zapisanie algorytmu Bellmana-Forda, a następnie udowodnienie jego poprawności. | ||
{{algorytm|Bellmana-Forda|algorytm_Bellmana-Forda| | {{algorytm|Bellmana-Forda|algorytm_Bellmana-Forda| | ||
Linia 96: | Linia 95: | ||
Poniższa animacja przedstawia działanie algorytmu dla grafu o pięciu wierzchołkach. <center><flash>file=Zasd_animacja_bellman_ford1.swf|width=660|height=250</flash></center> | Poniższa animacja przedstawia działanie algorytmu dla grafu o pięciu wierzchołkach. <center><flash>file=Zasd_animacja_bellman_ford1.swf|width=660|height=250</flash></center> | ||
Algorytm ten działa w czasie <math>O(|V||E|)</math>, co łatwo pokazać gdyż: | Algorytm ten działa w czasie <math>O(|V||E|)</math>, co łatwo pokazać, gdyż: | ||
* proces inicjacji w linii 1 zajmuje czas <math>O(|V|)</math>, | * proces inicjacji w linii 1 zajmuje czas <math>O(|V|)</math>, | ||
* w każdym z <math>|V|</math> przebiegów głównej pętli w linii 2 algorytmu przeglądane są wszystkie krawędzie grafu w linii 3 , co zajmuje czas <math>O(|V||E|)</math>, | * w każdym z <math>|V|</math> przebiegów głównej pętli w linii 2 algorytmu przeglądane są wszystkie krawędzie grafu w linii 3 , co zajmuje czas <math>O(|V||E|)</math>, | ||
Linia 106: | Linia 105: | ||
{{lemat|1|bf_poprawnosc_1|3= | {{lemat|1|bf_poprawnosc_1|3= | ||
Niech <math>G = (V,E)</math> będzie grafem skierowanym i niech funkcja <math>w:E \to \mathcal{R}</math> zadaje wagi krawędzi. Niech <math>s</math> będzie wierzchołkiem z którego liczymy odległości algorytmem Bellmana-Forda. Jeżeli w grafie nie ma cykli o ujemnej wadze osiągalnych z <math>s</math>, to algorytm poprawnie oblicza odległości, tzn. na koniec działania algorytmu dla każdego <math>v \in V</math> wartość <math>d(v)</math> jest odległością w <math>G</math> z <math>s</math> do <math>v</math>. | Niech <math>G = (V,E)</math> będzie grafem skierowanym i niech funkcja <math>w:E \to \mathcal{R}</math> zadaje wagi krawędzi. Niech <math>s</math> będzie wierzchołkiem, z którego liczymy odległości algorytmem Bellmana-Forda. Jeżeli w grafie nie ma cykli o ujemnej wadze osiągalnych z <math>s</math>, to algorytm poprawnie oblicza odległości, tzn. na koniec działania algorytmu dla każdego <math>v \in V</math> wartość <math>d(v)</math> jest odległością w <math>G</math> z <math>s</math> do <math>v</math>. | ||
}} | }} | ||
{{dowod|||3=Oznaczmy przez <math>\delta(v,u)</math> odległość z wierzchołka <math>v</math> do <math>u</math> w grafie <math>G</math>. Niech <math>v</math> będzie wierzchołkiem osiągalnym ze źródła <math>s</math> i niech <math>p = (v_0, v_1, \ldots, v_k)</math> oznacza najkrótszą ścieżkę z <math>s</math> do <math>v</math>, gdzie <math>v_0 = s</math> oraz <math>v_k = v</math>. Ścieżka ta jest ścieżką prostą, bo najkrótsze ścieżki muszą być proste, więc <math>k\le |V|-1</math>. Pokażemy teraz indukcyjnie, że poczynając od <math>i</math>-tego przebiegu zachodzi <math>d(v_i) = \delta(s,v_i)</math> dla <math>i = 0,1,\ldots, k</math>. W algorytmie wykonujemy <math>|V|-1</math> obrotów pętli oraz <math>k \le |V|-1</math>, co oznacza, że z tej tezy indukcyjnej wynika poprawność algorytmu. | {{dowod|||3=Oznaczmy przez <math>\delta(v,u)</math> odległość z wierzchołka <math>v</math> do <math>u</math> w grafie <math>G</math>. Niech <math>v</math> będzie wierzchołkiem osiągalnym ze źródła <math>s</math> i niech <math>p = (v_0, v_1, \ldots, v_k)</math> oznacza najkrótszą ścieżkę z <math>s</math> do <math>v</math>, gdzie <math>v_0 = s</math> oraz <math>v_k = v</math>. Ścieżka ta jest ścieżką prostą, bo najkrótsze ścieżki muszą być proste, więc <math>k\le |V|-1</math>. Pokażemy teraz indukcyjnie, że poczynając od <math>i</math>-tego przebiegu zachodzi <math>d(v_i) = \delta(s,v_i)</math> dla <math>i = 0,1,\ldots, k</math>. W algorytmie wykonujemy <math>|V|-1</math> obrotów pętli oraz <math>k \le |V|-1</math>, co oznacza, że z tej tezy indukcyjnej wynika poprawność algorytmu. | ||
Zauważmy, że teza indukcyjna zachodzi po inicjacji algorytmu, gdyż <math>d(v_0) = d(s) = 0</math> i <math>\delta(s,s) = \delta(s,v_0)</math>. Załóżmy, że teza indukcyjna zachodzi dla kroku <math>k</math> | Zauważmy, że teza indukcyjna zachodzi po inicjacji algorytmu, gdyż <math>d(v_0) = d(s) = 0</math> i <math>\delta(s,s) = \delta(s,v_0)</math>. Załóżmy, że teza indukcyjna zachodzi dla kroku <math>k</math>-tego. Ponieważ ścieżki <math>p = (v_0, v_1, \ldots, v_i)</math> dla <math>i \le k</math> są najkrótsze jako podścieżki ścieżki <math>p</math>, to po <math>k+1</math> wykonaniu pętli wartości <math>d(v_i)</math> dla <math>i \le k</math> się nie zmienią. Pozostaje nam więc do pokazania to, że wartość <math>d(v_{k+1})</math> będzie dobrze policzona. W <math>k+1</math> przebiegu wykonujemy między innymi relaksację krawędzi <math>(v_{k}, v_{k+1})</math>. Ponieważ <math>d(v_k)</math> jest dobrze policzone, po tej relaksacji wyznaczona będzie także poprawnie wartość <math>d(v_{k+1})</math>, bo założyliśmy, że najkrótsza ścieżka do <math>v_{k+1}</math> przechodzi przez <math>v_k</math>. | ||
Pozostaje nam jedynie zastanowić się, co się dzieje, gdy wierzchołek <math>v</math> nie jest osiągalny z <math>s</math>. Musi wtedy zachodzić <math>d(v) = \infty</math> pod koniec działania algorytmu. Gdyby tak nie było to | Pozostaje nam jedynie zastanowić się, co się dzieje, gdy wierzchołek <math>v</math> nie jest osiągalny z <math>s</math>. Musi wtedy zachodzić <math>d(v) = \infty</math> pod koniec działania algorytmu. Gdyby tak nie było, oznaczałoby to, z właściwości procedury [[#algorytm_relaksacja_krawędzi|RELAKSUJ]], że istnieje ścieżka od <math>s</math> do <math>v</math>, co daje sprzeczność. | ||
}} | }} | ||
{{twierdzenie|2|bf_poprawnosc|3= | {{twierdzenie|2|bf_poprawnosc|3= | ||
Niech <math>G = (V,E)</math> będzie grafem skierowanym i niech funkcja <math>w:E \to \mathcal{R}</math> zadaje wagi krawędzi. Załóżmy, że algorytm Bellmana-Forda został wykonany dla wierzchołka <math>s</math>. Jeżeli graf zawiera | Niech <math>G = (V,E)</math> będzie grafem skierowanym i niech funkcja <math>w:E \to \mathcal{R}</math> zadaje wagi krawędzi. Załóżmy, że algorytm Bellmana-Forda został wykonany dla wierzchołka <math>s</math>. Jeżeli graf zawiera cykl o ujemnej wadze osiągalny ze źródła <math>s</math>, to algorytm zwraca wartość NIL, w przeciwnym wypadku <math>d(v)</math> jest odległością z <math>s</math> do <math>v</math>, a <math>\pi(v)</math> wyznacza drzewo najkrótszych ścieżek o korzeniu w <math>s</math>. | ||
}} | }} | ||
{{dowod|||3=Załóżmy najpierw, że graf nie zawiera cykli o ujemnej wadze, które byłyby osiągalne z <math>s</math>. Wtedy z [[#bf_poprawnosc_1|Lematu 1]] wiemy, że <math>d(v)</math> są poprawnie policzonymi odległościami. Jeżeli odległości <math>d(v)</math> zostały poprawnie policzone przez [[#algorytm_relaksacja_krawędzi| funkcję RELAKSUJ]] to <math>\pi(v)</math> koduje najkrótsze ścieżki w grafie. Wynika to z właściwości [[#algorytm_relaksacja_krawędzi|funkcji RELAKSUJ]], która wyliczając odległość | {{dowod|||3=Załóżmy najpierw, że graf nie zawiera cykli o ujemnej wadze, które byłyby osiągalne z <math>s</math>. Wtedy z [[#bf_poprawnosc_1|Lematu 1]] wiemy, że <math>d(v)</math> są poprawnie policzonymi odległościami. Jeżeli odległości <math>d(v)</math> zostały poprawnie policzone przez [[#algorytm_relaksacja_krawędzi| funkcję RELAKSUJ]], to <math>\pi(v)</math> koduje najkrótsze ścieżki w grafie. Wynika to z właściwości [[#algorytm_relaksacja_krawędzi|funkcji RELAKSUJ]], która wyliczając odległość wyznacza jednocześnie, przez jaki wierzchołek prowadzi ta najkrótsza ścieżka. | ||
Musimy teraz pokazać, że algorytm poprawnie wykrywa, czy w grafie <math>G</math> istnieje cykl ujemnej długości osiągalny z <math>s</math>. Jeżeli nie ma takiego cyklu | Musimy teraz pokazać, że algorytm poprawnie wykrywa, czy w grafie <math>G</math> istnieje cykl ujemnej długości osiągalny z <math>s</math>. Jeżeli nie ma takiego cyklu, wtedy <math>d(v)</math> są poprawnie policzone przed wykonaniem testu w liniach 5-8 [[#algorytm_Bellmana-Forda|algorytmu Bellmana-Forda]]. W takim razie zachodzi: | ||
Linia 131: | Linia 130: | ||
Powyższa nierówność zachodzi ponieważ <math>s \to u \to v</math> jest ścieżką w grafie, a więc jest nie krótsza niż najkrótsza ścieżka <math>s \to v</math>. Widzimy więc, że w tym przypadku żaden z testów w linijce 6 algorytmu nie będzie spełniony i algorytm nie zwróci <math>NIL</math>. | Powyższa nierówność zachodzi, ponieważ <math>s \to u \to v</math> jest ścieżką w grafie, a więc jest nie krótsza niż najkrótsza ścieżka <math>s \to v</math>. Widzimy więc, że w tym przypadku żaden z testów w linijce 6 algorytmu nie będzie spełniony i algorytm nie zwróci <math>NIL</math>. | ||
Załóżmy teraz, że w grafie <math>G</math> istnieje cykl o ujemnej wadze osiągalny z <math>s</math>. Oznaczmy ten cykl jako <math>c =(v_0, v_1,\ldots, v_k)</math>, gdzie <math>v_0 = v_k</math>. Dla cyklu tego mamy: | Załóżmy teraz, że w grafie <math>G</math> istnieje cykl o ujemnej wadze osiągalny z <math>s</math>. Oznaczmy ten cykl jako <math>c =(v_0, v_1,\ldots, v_k)</math>, gdzie <math>v_0 = v_k</math>. Dla cyklu tego mamy: | ||
Linia 140: | Linia 139: | ||
</math>}} | </math>}} | ||
Gdyby w tej sytuacji [[#algorytm Bellmana-Forda| algorytm Bellmana-Forda]] nie zwrócił wartości <math>NIL</math> to dla każdej krawędzi <math>(v_i, v_{i+1})</math> musiałaby zachodzić nierówność <math>d(v_{i}) + w(v_i, v_{i+1}) \ge d(v_{i+1}) </math>. Sumując | Gdyby w tej sytuacji [[#algorytm Bellmana-Forda| algorytm Bellmana-Forda]] nie zwrócił wartości <math>NIL</math>, to dla każdej krawędzi <math>(v_i, v_{i+1})</math> musiałaby zachodzić nierówność <math>d(v_{i}) + w(v_i, v_{i+1}) \ge d(v_{i+1})</math>. Sumując tę nierówność stronami po wszystkich <math>i = 0,\ldots, k-1</math>, otrzymujemy: | ||
{{wzor2|1=<math> | {{wzor2|1=<math> | ||
\sum_{i=0}^{k-1} \left[d(v_i) + w(v_i, v_{i+1})\right] \ge \sum_{i=0}^{k-1} d(v_{i+1}) | \sum_{i=0}^{k-1} \left[d(v_i) + w(v_i, v_{i+1})\right] \ge \sum_{i=0}^{k-1} d(v_{i+1})</math>,}} | ||
</math>}} | |||
{{wzor2|1=<math> | {{wzor2|1=<math> | ||
\sum_{i=0}^{k-1} d(v_i) + \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \ge \sum_{i=1}^{k} d(v_{i}) | \sum_{i=0}^{k-1} d(v_i) + \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \ge \sum_{i=1}^{k} d(v_{i})</math>,}} | ||
</math>}} | |||
Linia 164: | Linia 161: | ||
{{wzor2|1=<math> | {{wzor2|1=<math> | ||
\sum_{i=0}^{k-1} w(v_i, v_{i+1}) \ge 0 | \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \ge 0</math>,}} | ||
</math>}} | |||
co stoi w sprzeczności z [[#wzor_cykl|nierównością (1)]]. Jeżeli więc w grafie istnieje cykl o ujemnej wadze osiągalny z <math>s</math>, to algorytm zwróci <math>NIL</math>. | co stoi w sprzeczności z [[#wzor_cykl|nierównością (1)]]. Jeżeli więc w grafie istnieje cykl o ujemnej wadze osiągalny z <math>s</math>, to algorytm zwróci <math>NIL</math>. | ||
}} | }} |
Aktualna wersja na dzień 22:16, 11 wrz 2023
Abstrakt
Pierwsza część tego wykładu poświęcona będzie problemowi obliczania najkrótszych ścieżek w grafie z jednego źródła w przypadku, w którym wagi krawędzi mogą być ujemne. Zaprezentujemy algorytm Bellmana-Forda, który rozwiązuje ten problem w czasie . W drugiej części zajmiemy się problemem obliczania odległości między wszystkimi parami wierzchołków. Pokażemy związki tego problemu z mnożeniem macierzy.
Definicja problemu
W wykładzie tym zajmiemy się problemem obliczania najkrótszych ścieżek w grafie wychodzących z jednego wierzchołka. Załóżmy, że mamy dany graf , funkcję przypisującą wagi krawędziom oraz jeden wybrany wierzchołek . Wagę ścieżki definiujemy jako wagę tworzących ją krawędzi:
Odległość z wierzchołka do wierzchołka definiujemy jako
Najkrótszą ścieżką z wierzchołka do wierzchołka jest każda ścieżka z do , której waga jest równa odległości z do .
W problemie najkrótszych ścieżek z jednego wierzchołka chcemy obliczyć odległości dla wszystkich wierzchołków wraz z drzewem najkrótszych ścieżek z . Drzewem najkrótszych ścieżek o korzeniu w nazywamy podgraf skierowany , w którym , taki, że:
- jest zbiorem wierzchołków w do których istnieje ścieżka z ,
- jest drzewem którego korzeniem jest ,
- dla każdego wierzchołka jedyna ścieżka z do w grafie jest najkrótszą ścieżką z do w grafie .
W naszych algorytmach drzewo najkrótszych ścieżek będziemy reprezentować jako funkcję poprzedników , określającą poprzednika wierzchołka w drzewie najkrótszych ścieżek. Drzewo najkrótszych ścieżek możemy uzyskać z w następujący sposób:
Algorytm Bellmana-Forda
Algorytm Bellmana-Forda służy do rozwiązania problemu znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi mogą być ujemne. W problemie tym mamy dany graf i funkcję wagową . Algorytm Bellmana-Forda wylicza dla zadanego wierzchołka , czy istnieje w grafie cykl o ujemnej wadze osiągalny z . Jeżeli taki cykl nie istnieje, algorytm oblicza najkrótsze ścieżki z do wszystkich pozostałych wierzchołków wraz z ich wagami.
Relaksacja
Podobnie jak to było w Algorytmie Dijkstry, użyjemy metody relaksacji. W metodzie tej utrzymujemy dla każdego wierzchołka wartość , będącą górnym ograniczeniem wagi najkrótszej ścieżki z do . W algorytmie utrzymywać będziemy także dla każdego wierzchołka wskaźnik wskazujący na poprzedni wierzchołek, przez który prowadzi dotychczas znaleziona najkrótsza ścieżka. Na początku wielkości te inicjujemy przy pomocy następującej procedury:
Algorytm Inicjacja algorytmu najkrótszych ścieżek
INICJACJA 1 for każdy wierzchołek do 2 begin 3 4 5 end 6 7 return
Ustalone przez tą procedurę wartości są dobrymi ograniczeniami górnymi na odległości w grafie.
Relaksacja krawędzi polega na sprawdzeniu, czy przechodząc krawędzią z do , nie otrzymamy krótszej ścieżki z do niż ta dotychczas znaleziona. Jeżeli tak, to aktualizowane są także wartości i . W celu relaksacji krawędzi używamy następującej procedury nazwanej tutaj RELAKSUJ.
Algorytm Relaksacja krawędzi
RELAKSUJ 1 if then 3 begin 4 5 6 end
Algorytm
Po przypomnieniu czym była relaksacja, gotowi jesteśmy na zapisanie algorytmu Bellmana-Forda, a następnie udowodnienie jego poprawności.
Algorytm Bellmana-Forda
BELLMAN-FORD 1 INICJUJ 2 for to do 3 for każda krawędź do 4 RELAKSUJ 5 for każda krawędź do 6 if ' then 7 return 8 return
Poniższa animacja przedstawia działanie algorytmu dla grafu o pięciu wierzchołkach.
Algorytm ten działa w czasie , co łatwo pokazać, gdyż:
- proces inicjacji w linii 1 zajmuje czas ,
- w każdym z przebiegów głównej pętli w linii 2 algorytmu przeglądane są wszystkie krawędzie grafu w linii 3 , co zajmuje czas ,
- końcowa pętla algorytmu w liniach 5-7 działa w czasie .
Poprawność
Dowód poprawności algorytmu Bellmana-Forda zaczniemy od pokazania, że algorytm działa poprawnie przy założeniu, że w grafie nie ma cykli o ujemnych wagach.
Lemat 1
Dowód
Zauważmy, że teza indukcyjna zachodzi po inicjacji algorytmu, gdyż i . Załóżmy, że teza indukcyjna zachodzi dla kroku -tego. Ponieważ ścieżki dla są najkrótsze jako podścieżki ścieżki , to po wykonaniu pętli wartości dla się nie zmienią. Pozostaje nam więc do pokazania to, że wartość będzie dobrze policzona. W przebiegu wykonujemy między innymi relaksację krawędzi . Ponieważ jest dobrze policzone, po tej relaksacji wyznaczona będzie także poprawnie wartość , bo założyliśmy, że najkrótsza ścieżka do przechodzi przez .
Pozostaje nam jedynie zastanowić się, co się dzieje, gdy wierzchołek nie jest osiągalny z . Musi wtedy zachodzić pod koniec działania algorytmu. Gdyby tak nie było, oznaczałoby to, z właściwości procedury RELAKSUJ, że istnieje ścieżka od do , co daje sprzeczność.
Twierdzenie 2
Dowód
Musimy teraz pokazać, że algorytm poprawnie wykrywa, czy w grafie istnieje cykl ujemnej długości osiągalny z . Jeżeli nie ma takiego cyklu, wtedy są poprawnie policzone przed wykonaniem testu w liniach 5-8 algorytmu Bellmana-Forda. W takim razie zachodzi:
Powyższa nierówność zachodzi, ponieważ jest ścieżką w grafie, a więc jest nie krótsza niż najkrótsza ścieżka . Widzimy więc, że w tym przypadku żaden z testów w linijce 6 algorytmu nie będzie spełniony i algorytm nie zwróci .
Załóżmy teraz, że w grafie istnieje cykl o ujemnej wadze osiągalny z . Oznaczmy ten cykl jako , gdzie . Dla cyklu tego mamy:
(1)
Gdyby w tej sytuacji algorytm Bellmana-Forda nie zwrócił wartości , to dla każdej krawędzi musiałaby zachodzić nierówność . Sumując tę nierówność stronami po wszystkich , otrzymujemy:
ponieważ to
Wiemy, że cykl jest osiągalny z , a zatem dla każdego mamy . Możemy więc skrócić po obydwu stronach nierówności otrzymując:
