Zaawansowane algorytmy i struktury danych/Ćwiczenia 8
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwaniaZadanie 1
Pokaż, że każdy graf
może zostać zanurzony w grafie rozpiętym na co najwyżej wierzchołkach tak, aby dla każdego skojarzenia w istniało dokładnie jedno doskonałe skojarzenie takie, że . Czy jeżeli jest zewnętrznie planarny, to może być planarny?Rozwiązanie
Zadanie 2
Dla grafu dwudzielnego
, gdzie zdefiniujmy symboliczną macierz sąsiedztwa rozmiaru jako:gdzie
to różne zmienne przypisane krawędzią. Pokaż, że wtedy i tylko wtedy gdy ma doskonałe skojarzenie.Rozwiązanie
Zadanie 3
Dla grafu
zdefiniujmy symboliczną macierz sąsiedztwa rozmiaru jako:gdzie
to różne zmienne przypisane krawędzią. Pokaż, że wtedy i tylko wtedy gdy ma doskonałe skojarzenie.Rozwiązanie
Zadanie 4
Załóżmy, że graf
ma doskonałe skojarzenie. Powiemy, że krawędź jest niedozwolona jeżeli nie należy do żadnego doskonałego skojarzenia w . Pokaż jak w czasie znaleźć wszystkie niedozwolone krawędzie w grafie .Rozwiązanie