Wstęp do programowania / Ćwiczenia 2
<<< Powrót do głównej strony wykładu
<<< Powrót do modułu Wprowadzenie do programowania
Ta strona zawiera podstawowe zadania na tablice oraz rekurencję.
Ogladaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (Flaga polska)
Tablica A typu array[1..N] of integer (N > 0) wypełniona zerami i jedynkami reprezentuje ciąg N urn w których znajdują się żetony białe (0) i czerwone (1). Podaj algorytm działania automatu przestawiającego żetony w urnach tak, by najpierw były żetony czerwone, potem białe. Robot może wykonywać dwa rodzaje operacji:
- Kol(i) - podaje kolor żetonu w i-tej urnie (1 ≤ i ≤ n)
- Z(i,j) - zamienia żetony z i-tej i j-tej urny (1 ≤ i,j ≤ n)
Uwagi:
- Operacja Kol jest bardzo kosztowna, więc zależy nam na tym by kolor każdego żetonu był sprawdzany co najwyżej raz.
- Robot potrafi zapamiętać tylko kilka wartości z przedziału 0..N+1.
- Nie można założyć, że występuje choć jeden żeton w każdym z kolorów.
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Wskazówka 3
Rozwiązanie 3
Wskazówka 4
Rozwiązanie 4
Ćwiczenie 1
Ćwiczenie 2
Zadanie 2 (Flaga trójkolorowa)
Dana jest tablica A typu array[1..N] of integer (N > 0). Należy tak poprzestawiać w niej elementy, żeby najpierw były elementy ujemne, potem równe zero, a na końcu dodatnie.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 3 (Najdłuższe plateau)
Napisz program znajdujący w zadanej tablicy A typu array[1..N] of integer, N > 0, długość najdłuższego stałego segmentu (spójnego fragmentu tablicy).
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Ćwiczenie 1
Inna wersja zadania
A co było gdyby tablica była posortowana ?
Wskazówka 3
Rozwiązanie 3
Zadanie 4 (Segment o maksymalnej sumie)
Napisz program znajdujący w zadanej tablicy A typu array[1..N] of integer, N > 0, maksymalną sumę segmentu (spójnego fragmentu tablicy). Przyjmujemy, że segment pusty ma sumę 0.
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Wskazówka 3
Rozwiązanie 3
Wskazówka 4
Rozwiązanie 4
Rozwiązanie 5
Zadanie 5 (Część wspólna zbiorów)
Dane są dwie tablice A i B typu array[1..N] of integer, N > 0. Obie są posortowane rosnąco. Należy traktując A i B jako reprezentacje dwu zbiorów wypisać (operacją write) cześć wspólną tych zbiorów.
Wskazówka 1
Rozwiązanie 1
Zadanie 6 (Suma zbiorów)
Dane są dwie tablice A i B typu array[1..N] of integer, N > 0. Obie są posortowane rosnąco. Należy traktując A i B jako reprezentacje dwu zbiorów wypisać (operacją write) sumę tych zbiorów.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Wskazówka 2
Rozwiązanie 2
Zadanie 7 (Podciąg)
Dane są dwie tablice A typu array[1..N] of integer i B typu array[1..M] of integer, N, M > 0. Napisz program sprawdzający, czy A jest podciągiem B (tzn. czy istnieje funkcja f, rosnąca, z 1..N w 1..M, t. ze A[i]=B[f(i)]).
Wskazówka 1
Rozwiązanie 1
Zadanie 8 (Odwracanie tablicy)
Dana tablica A typu array[0..N-1] of integer, N > 1. Napisz program odwracający kolejność elementów w A.
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Zadanie 9 (Przesunięcie cykliczne)
Dana tablica A typu array[0..N-1] of integer, N > 1, i liczba naturalna k > 1. Napisz program realizujący przesunięcie cykliczne w prawo o k pól, czyli przesuwający zawartość pola A[i] na A[(i+k) mod N] dla każdego i < N.
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Wskazówka 3
Rozwiązanie 3
Zadanie 10 (Następna permutacja)
Tablica A typu array[1..N] of integer, N > 0, zawiera pewną permutację liczb 1.. N. Napisz program wpisujący do A następną leksykograficznie permutację. Zakładamy, że permutacja w A nie jest ostatnia leksykograficznie.
Przykład Dla N=3 kolejne permutacje w porządku leksykograficznym wyglądają nastepująco:
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
Wskazówka 1
Rozwiązanie 1
Zadanie 11 (Segment o danej sumie)
Tablica A typu array[1..N] of integer, N > 0, zawiera tylko liczby dodatnie. Napisz program który dla danego W typu integer sprawdza czy w A istnieje segment o sumie W (czyli czy istnieją l, p takie, że W
).Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Zadanie 12 (Głosowanie większościowe)
Dana jest tablica A typu array[1..N] of integer, N > 0. Sprawdzić czy jest w niej element wystepujący więcej niż N/2 razy i jeśli tak wskaż go.
Wskazówka 1
Rozwiązanie 1
Wskazówka 2
Rozwiązanie 2
Zadanie 13 (Arytmetyka liczb wielocyfrowych)
Liczby wielocyfrowe będą reprezentowane w tablicach typu liczba=array[0..N-1] of integer, N > 1, w taki sposób, że najmniej znacząca cyfra jest pod indeksem 0. Rozpatrujemy liczby przy podstawie b > 1. Napisz procedury obliczające:
- sumę liczb A i B do C. Jeśli wynik nie zmieści się w C to wartość C nie ma znaczenia. Zmienna przepełnienie wskazuje czy do niego doszło czy nie.
- różnicę A i B do C. Jeśli wynik miałby byc liczbą ujemną to wartość C nie ma znaczenia. Zmienna ujemny wskazuje jaki jest znak wyniku.
- iloczyn A i B do C (C powinno być tablicą dwa razy dłuższą niż A i B, żeby móc pomieścić wynik).
Rozwiązanie 1
Zadanie 14 (Labirynt)
Czy istnieje ścieżka miedzy wskazanymi punktami (i1,j1) i (i2,j2) w labiryncie reprezentowanym przez prostokątną tablicę liczb całkowitych o rozmiarze M×N, zawierającą zera (ściana) i jedynki (droga)? Zakładamy, że nie można przechodzić z pola na pole po skosie (np. z (2,5) na (3,6)), a tylko w czterech podstawowych kierunkach (np. z (2,5) na (3,5), (2,4) itd.)
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3
Odpowiedź
Dla ciekawskich:
Zadanie 15 (Z górki na pazurki)
W tablicy liczb całkowitych o rozmiarze M×N zapisana jest mapa gór (każdy punkt ma podaną dodatnią wysokość). Sprawdzić, czy da się przejść z punktu startowego (i1,j1) do docelowego (i2,j2) idąc:
- tylko w dół lub po płaskim
- tylko w dół
Tak jak w poprzednim zadaniu poruszać się można tylko w czterech kierunkach podstawowych, nie po przekątnej.
Wskazówka 1
Rozwiązanie 1
Rozwiązanie 2
Zadanie 16 (Wieże Hanoi z ograniczeniami)
Na wykładzie były wieże Hanoi. Ciekawa modyfikacja tego zadania polega na zabronieniu ruchów pomiędzy niektórymi pałeczkami, np. z pierwszej na drugą. Zapisać procedurę realizującą to zadanie przy zabronionych niektórych ruchach.
Wskazówka 1
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 17 (Ustawianie hetmanów)
Napisz procedurę znajdująca wszystkie takie rozstawienia 8 hetmanów na szachownicy, by żadne dwa hetmany się nie atakowały.
Wskazówka 1
Rozwiązanie 1
Zadanie 18 (Mnożenie wielomianów)
Dane są dwie tablice (array[0..N-1] of real) reprezentujące dwa wielomiany stopnia N-1. Należy obliczyć iloczyn tych wielomianów metodą dziel-i-zwyciężaj. Zakładamy, że N jest potęgą dwójki.
Wskazówka 1
Zadanie 19 (Suma składników)
Napisz procedurę, która wypisze dla zadanej liczby n jej wszystkie rozkłady na sumy nieujemnych liczb naturalnych większych od 1 ustawionych w kolejności nierosnącej. Np. dla n = 3:
3 = 3
3 = 2+1
3 = 1+1+1
Wskazówka 1
Wskazówka 2
Rozwiązanie 1