Wstęp do programowania / Ćwiczenia 3: Różnice pomiędzy wersjami
m |
|||
Linia 53: | Linia 53: | ||
''Pełność'': (każde słowo języka da się wyprowadzić). Najpierw przez indukcję po m pokażemy, że każde słowo postaci <math>1^m0^m</math> można wyprowadzić z J. Następnie przez indukcję po n, że każde słowo postaci <math>0^n1^m0^{n+m}</math> można wyprowadzić z S. | ''Pełność'': (każde słowo języka da się wyprowadzić). Najpierw przez indukcję po m pokażemy, że każde słowo postaci <math>1^m0^m</math> można wyprowadzić z J. Następnie przez indukcję po n, że każde słowo postaci <math>0^n1^m0^{n+m}</math> można wyprowadzić z S. | ||
− | Istotnie, jeśli m=0, to słowo <math>1^00^0=\epsilon</math> można wyprowadzić z J. Zakładając, że słowo <math>1^m0^m</math> można wyprowadzić z J, łatwo | + | Istotnie, jeśli m=0, to słowo <math>1^00^0=\epsilon</math> można wyprowadzić z J. Zakładając, że słowo <math>1^m0^m</math> można wyprowadzić z J, łatwo zauważyć, że wyprowadzenie J → 1J0 →...→ 11<sup>m</sup>0<sup>m</sup>0 jest wyprowadzeniem słowa <math>1^{m+1}0^{m+1}</math>. Podobnie łatwo pokazać, że każde słowo postaci <math>0^n1^m0^{n+m}</math> da się wyprowadzić z S. |
</div> | </div> | ||
</div>}} | </div>}} | ||
Linia 77: | Linia 77: | ||
* <math>f_w(n)=0</math> | * <math>f_w(n)=0</math> | ||
* <math>f_w(i)\ge0</math> dla <math>i=0\dots n</math> | * <math>f_w(i)\ge0</math> dla <math>i=0\dots n</math> | ||
− | W przypadku gdy istnieje j takie, że <math>0<j<n</math> i <math>f_w(j)=0</math> słowa <math>w_1...w_j</math> oraz <math>w_{j+1}...w_n</math> są poprawnymi wyrażeniami nawiasowymi o długości mniejszej niż n. | + | W przypadku gdy istnieje j takie, że <math>0<j<n</math> i <math>f_w(j)=0</math>, słowa <math>w_1...w_j</math> oraz <math>w_{j+1}...w_n</math> są poprawnymi wyrażeniami nawiasowymi o długości mniejszej niż n. Zatem istnieją wyprowadzenia <math>S \rightarrow \cdots \rightarrow w_1...w_j</math> oraz <math>S \rightarrow \cdots \rightarrow w_{j+1}...w_n</math> i da się z nich złożyć wyprowadzenie <math>S \rightarrow SS \rightarrow \cdots \rightarrow w</math>. |
− | W przypadku, gdy dla wszystkich j, <math>f_w(j)>0</math> słowo <math>w_2...w_{n-1}</math> jest poprawnym wyrażeniem nawiasowym o długości n-2, | + | W przypadku, gdy dla wszystkich j, <math>f_w(j)>0</math> słowo <math>w_2...w_{n-1}</math> jest poprawnym wyrażeniem nawiasowym o długości n-2, zatem wyprowadzalnym z S. Stąd łatwo otrzymać wyprowadzenie słowa w <math>S \rightarrow (S) \rightarrow \cdots \rightarrow w</math>. |
</div> | </div> | ||
</div>}} | </div>}} |
Wersja z 21:05, 15 lis 2006
<<< Powrót do modułu Gramatyki - definiowanie składni i semantyki wyrażeń
To są ćwiczenia z gramatyk bezkontekstowych.
Oglądaj wskazówki i rozwiązania __SHOWALL__
Ukryj wskazówki i rozwiązania __HIDEALL__
Zadanie 1 (palindromy)
Napisz gramatykę generującą wszystkie palindromy nad alfabetem {0,1}.
Rozwiązanie
Zadanie 2
Napisz gramatykę generującą język wszystkich słów nad alfabetem {0,1} postaci
.Rozwiązanie 1
Zadanie 3 (wyrażenia nawiasowe)
Napisz gramatykę generującą wszystkie poprawne wyrażenia nawiasowe.
Rozwiązanie 1
Rozwiązanie 2
Zgodność: oczywista.
Pełność: podobnie jak w Rozwiązaniu 1. Dla uzyskania danego słowa w o długości > 0 należy posłużyć się funkcją
. Przyglądając się pierwszej pozycji j>0, dla której , zauważamy, że słowa oraz są poprawnymi wyrażeniami nawiasowymi o mniejszej długości. Zatem można uzyskać wyprowadzenie słowa w .Zadanie 4
Podaj gramatykę języka słów w nad alfabetem {0,1} takich, że
Rozwiązanie 1
Rozwiązanie 2
Zadanie 5
Podaj gramatykę języka słów w nad alfabetem {0,1} takich, że
Rozwiązanie 1
Zadanie 6 (liczby podzielne przez 3)
Podaj gramatykę generującą liczby w zapisie binarnym, które są podzielne przez 3.
Rozwiązanie 1
Ćwiczenie 1
Odpowiedź
Zadanie 7
Podaj gramatykę generującą słowa nad alfabetem {0,1}, w których nie występuje podsłowo 000.
Rozwiązanie 1
Rozwiązanie 2
Rozwiązanie 3
Dla ciekawskich