Test parsera 2

Z Studia Informatyczne
Wersja z dnia 11:49, 14 lip 2006 autorstwa Beret (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Podstawowe pojęcia i definicje

\label{sec:podstawy}

Powyżej widzimy tytuł naszego przedmiotu, następnie jego autora oraz datę pochodzenia bieżącej wersji, generowaną automatycznie.

Dane o przedmiocie i autorze definiujemy w pliku \lstux!dane.tex!:

\begin{latex} \title{Geometria inaczej} \author{Piotr Goras} \date{Wersja z \today} \hyperbaseurl{http://osilek.mimuw.edu.pl} % link do strony naszego przedmiotu \end{latex}


Definicja Trójkąt prostokątny

Trójkątem prostokątnym nazywamy taki trójkąt, który ma przynajmniej jeden kątprosty.

Twierdzenie Pitagoras

W trójkącie prostokątnym o przyprostokątnych , i przeciwprostokątnej zawsze zachodzi {} zob. rys. \ref{rys:trojkat}

\rysunek{trojkat}{Ilustracja twierdzenia Pitagorasa.}

Rysunki akceptujemy tylko w formacie PNG. Zdjęcia mogą także być w formacie JPG.

\begin{proof} Ble, ble. \end{proof}

W twierdzeniu \ref{thm:pitagoras} widać, jak można wykorzystać definicję \ref{dfn:kat_prosty} do tego, by sformułować je bez potrzeby stosowania \osiref{Analiza matematyczna}{miary Kąt'a}.


Stwierdzenie

Nie każdy trójkąt jest prosty.

Wniosek

Są trójkąty o bokach długości , , , dla których .
Uwaga
To nie jest cała prawda o trójkątach! Dodatkowo, wiemy, że:
  • w każdym trójkącie o bokach , , zachodzi:
    {}
  • suma kątów w trójkącie jest większa od 90 stopni
  • itd.

Równania

\begin{latex} {} \end{latex}

daje {}

\begin{latex}

\end{latex}

daje


\begin{latex} \begin{align} a + b &= c\\ c + d + e &= f \end{align} \end{latex}

daje \begin{align} a + b &= c\\ c + d + e &= f \end{align}


Hiperłącza

\label{sec:hiper}

\url{http://www.mimuw.edu.pl}

\href{http://www.mimuw.edu.pl}{Wydział Matematyki}

\href{wyklad1.html}{Link do podstrony w naszym przedmiocie}

Inne informacje

\label{sec:inne}