Test HB
AM1 - mod 2
2. Funkcje elementarne
Przypominamy własności funkcji znanych ze szkoły (funkcja liniowa, homograficzna, wielomianowa, wykładnicza, funkcje trygonometryczne). Definiujemy funkcje hiperboliczne. Rozważamy podstawowe własności funkcji odwrotnych.
2.1 Funkcje różnowartościowe. Funkcje monotoniczne
Z wykładu z teorii mnogości wiemy, że funkcja różnowartościowa jest bijekcją na swój zbiór wartości. Wiemy także, że relacja odwrotna do bijekcji
jest funkcją i to funkcją różnowartościową określoną na o wartościach w zbiorze .Definicja 2.1.
Niech
i niech . Zacieśnieniem (inaczej: zawężeniem lub restrykcją) funkcji do zbioru nazywamy funkcję równą funkcji na zbiorze , tzn. .Definicja 2.2.
Niech
będzie funkcją. Mówimy, że funkcja jest funkcją odwrotną do funkcji , jeśli dla dowolnego elementu zachodzi równość i dla dowolnego elementu zachodzi równość .Funkcję odwrotną do funkcji
będziemy oznaczać często symbolem , o ile nie prowadzi to do nieporozumienia. Należy odróżniać pojęcie funkcji odwrotnej od odwrotności funkcji, gdzie przez odwrotność funkcji rozumiemy funkcję .Niech
będą funkcjami jednej zmiennej. Jeśli jest funkcją odwrotną do , to w prostokątnym układzie współrzędnych wykres funkcji jest obrazem wykresu funkcji w symetrii osiowej względem prostej .Definicja 2.4.
Mówimy, że funkcja
jest rosnąca (odpowiednio: ściśle rosnąca) w przedziale , jeśli(odpowiednio:
)Definicja 2.5.
Mówimy, że funkcja
jest malejąca (odpowiednio: ściśle malejąca) w przedziale , jeśli(odpowiednio:
)Definicja 2.6.
Mówimy, że funkcja jest monotoniczna w przedziale, jeśli w tym przedziale jest rosnąca albo malejąca.
Przykład 2.7.
Funkcja
rośnie w każdym z przedziałów postaci nie jest jednak rosnąca w sumie przedziałów . Weźmy bowiem np. argumenty , . Wówczas , ale .Jeśli
a) jeśli jest rosnąca, to jest także rosnąca;
b) jeśli jest malejąca, to jest również malejąca.
Krótko: funkcja odwrotna do funkcji rosnącej jest rosnąca, a odwrotna do malejącej - malejąca.
2.2 Przegląd funkcji jednej zmiennej rzeczywistej
Definicja 2.9.
Niech
a) Wykresem funkcji afinicznej jest prosta.
b) Funkcja jest ściśle rosnąca, gdy i ściśle malejąca, gdy .
Jest bijekcją zbioru na zbiór , gdy .
c) Funkcja odwrotna do funkcji afinicznej jest funkcją afiniczną.
d) Złożenie funkcji afinicznych jest funkcją afiniczną.
Definicja 2.11.
Niech
Rysunek am1w02.0030
a) Funkcja afiniczna jest szczególnym przypadkiem funkcji homograficznej.
b) Wykresem funkcji homograficznej jest prosta (jeśli jest
afiniczna) lub hiperbola (jeśli nie jest afiniczna).
c) Funkcja odwrotna do homografii jest homografią.
d) Złożenie homografii jest homografią.
Definicja 2.13.
Niech
Definicja 2.14.
Funkcję
nazywamy funkcją wielomianową lub - krótko - wielomianem.a) Suma oraz iloczyn wielomianów jest wielomianem.
b) Złożenie funkcji wielomianowych jest funkcją wielomianową.
Wykażmy użyteczne oszacowanie z dołu wielomianu
za pomocą funkcji afinicznej .Dla dowolnej liczby całkowitej nieujemnej
i dowolnej liczby rzeczywistej zachodzi nierównośćprzy czym dla
Dowód
Zauważmy, że nierówność zachodzi dla
i . Wykażemy, że dla dowolnej liczby naturalnej prawdziwa jest implikacjaMamy bowiem:
Na mocy zasady indukcji matematycznej nierówność zachodzi więc dla każdej liczby całkowitej nieujemnej
. Zauważmy, że składnik dla zeruje się wyłącznie w punkcie , stąd nierówność Bernoullego jest ostra poza tym punktem, a jedynie dla zachodzi równość w tej nierówności.
Definicja 2.17.
Niech
Rysunek am1w02.0080
a) Funkcja
b) Jeśli jest parzystą liczbą naturalną, to zacieśnienie funkcji do przedziału
jest funkcją różnowartościową. Funkcją odwrotną do niej jest funkcja pierwiastek stopnia
Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle n g(x)=\root{n}\of{x}}
określona na przedziale o wartościach w .
c) Jeśli jest nieparzystą liczbą naturalną, to funkcja jest różnowartościowa na przedziale . Funkcją odwrotną do niej jest funkcja
Jeśli
jest liczbą naturalną nieparzystą,często używa się symbolu pierwiastka arytmetycznego do oznaczenia funkcji odwrotnej do funkcji i oznacza się ją krótko Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle g(x)=\root{n}\of{x}} , przy czym sens tego symbolu dla liczb rzeczywistych ujemnych określa się jak powyżej.2.3 Funkcja wykładnicza i logarytmiczna
Definicja 2.20
Niech
rzeczywistych nazywamy funkcją wykładniczą o podstawie będzie dowolną dodatnią liczbą rzeczywistą. Funkcję określoną na zbiorze liczb .a) Jeśli
, funkcja wykładnicza jest bijekcją zbioru na przedział . Nie zeruje się w żadnym punkcie swojej dziedziny.b) Jeśli
, funkcja jest ściśle rosnąca, jeśli zaś , jest ściśle malejąca.c) Jeśli
, funkcja jest stała.Definicja 2.22.
Niech
będzie dowolną liczbą rzeczywistą dodatnią, różną od jedności. Funkcję odwrotną do funkcji nazywamy funkcją logarytmiczną o podstawie i oznaczamy .Na ogół pomija się indeks
w oznaczeniu logarytmu liczby i pisze się krótko . Zwróćmy jednak uwagę na fakt, że w zależności od dziedziny nauki, czy techniki, symbol ten może oznaczać logarytmy o różnych podstawach. I tak informatycy na ogół posługują się tym symbolem mając na myśli logarytm o podstawie 2, tzn. . Z kolei w naukach technicznych symbol oznacza przeważnie logarytm dziesiętny. Natomiast matematycy posługują się najczęściej logarytmem o podstawie (do definicji i własności tej ważnej stałej powrócimy w następnych modułach). Stąd często w pracach matematycznych symbol oznacza właśnie logarytm o podstawie . My jednak, aby uniknąć nieporozumień, logarytm o podstawie będziemy oznaczać osobnym symbolem .Definicja 2.23.
Definicja 2.24.
a) Jeśli
, funkcja logarytmiczna jest bijekcją przedziału na zbiór .b) Jeśli
, funkcja jest ściśle rosnąca, jeśli zaś , jest ściśle malejąca.c) Jedynym miejscem zerowym funkcji logarytmicznej
jest punkt .d) Jeśli
, to logarytm jest dodatni w przedziale i jest ujemny w przedziale . Jeśli zaś , to logarytm jest ujemny w przedziale i jest dodatni w przedziale .Przypomnijmy jeszcze parę tożsamości, z których często będziemy korzystać.
a) Dla
, zachodzą równościb) Dla dodatnich liczb
, , prawdziwy jest wzór na zmianę podstawy logarytmuw szczególności, gdy
, mamy równośćc) Dla dowolnej liczby
i dodatnich , zachodzi równośćktóra w szczególnym przypadku, gdy
, ma postać2.4 Funkcje trygonometryczne i funkcje cyklometryczne
Przypomnijmy kilka własności funkcji trygonometrycznych sinus, cosinus, tangens i cotangens. Żadna z nich nie jest
różnowartościowa w swojej dziedzinie.
a) Funkcja
Rysunek am1w02.0150
b) Funkcja zacieśniona do przedziału
jest różnowartościowa, ściśle malejąca.
Rysunek am1w02.0160
c) Funkcja zacieśniona do przedziału
jest różnowartościowa, ściśle rosnąca.
Rysunek am1w02.0170
d) Funkcja zacieśniona do przedziału jest różnowartościowa, ściśle malejąca.
Pamiętamy również, że zachodzi
Twierdzenie 2.28.
Dla dowolnej liczby rzeczywistej
suma kwadratów cosinusa i sinusa jest równa jedności, tzn. .Tożsamość tę nazywamy jedynką trygonometryczną.
Rysunek am1w02.0180
Definicja 2.29.
Funkcję określoną na przedziale
Rysunek am1w02.0190
Definicja 2.30
Funkcję określoną na przedziale
Rysunek am1w02.0200
Definicja 2.31.
Funkcję określoną na przedziale
Rysunek am1w02.0200
Definicja 2.32.
Funkcję określoną na przedziale
o wartościach w przedziale , odwrotną do zacieśnienia funkcji cotangens do przedziału , nazywamy arcusem cotangensem i oznaczamy symbolem .Funkcje: arcus sinus, arcus cosinus, arcus tangens i arcus cotangens nazywamy funkcjami cyklometrycznymi.
Funkcje arcus sinus i arcus tangens są ściśle rosnące. Funkcje arcus cosinus i arcus cotangens -- ściśle malejące.
Ze wzorów redukcyjnych:
oraz wynika, żea) Dla dowolnej liczby
b) Dla dowolnej liczby zachodzi równość
2.5 Funkcje hiperboliczne i funkcje area
Określimy teraz cztery funkcje, których nazwy są nieprzypadkowo zbieżne z nazwami funkcji trygonometrycznych.
Definicja 2.35.
Niech
Rysunek am1w02.0210
a) Sinusem hiperbolicznym nazywamy funkcję
.
Rysunek am1w02.0220
b) Cosinusem hiperbolicznym nazywamy funkcję
.
Rysunek am1w02.0230
c) Tangensem hiperbolicznym nazywamy funkcję
Parser nie mógł rozpoznać (nieznana funkcja „\tgh”): {\displaystyle \displaystyle\tgh :x\mapsto\frac{\sinh x}{\cosh x}}
.
Rysunek am1w02.0240
d) Cotangensem hiperbolicznym nazywamy funkcję
Parser nie mógł rozpoznać (nieznana funkcja „\ctgh”): {\displaystyle \displaystyle\ctgh :x\mapsto\frac{1}{\tgh x}}
.
Wykażmy wpierw tożsamość, którą przez analogię do znanej tożsamości trygonometrycznej, wiążącej wartości funkcji sinus i cosinus, nazwiemy jedynką hiperboliczną.
Twierdzenie 2.36.
Dla dowolnej liczby rzeczywistej różnica kwadratów funkcji hiperbolicznych cosinus i sinus jest równa jedności, tzn. zachodzi równość
Dowód twierdzenia 2.36.
Z definicji funkcji
i mamy:stąd
W podobny sposób - wprost z definicji - można wykazać, że zachodzą następujące tożsamości analogiczne do znanych tożsamości trygonometrycznych:

Twierdzenie 2.37.
Niech
a)
b)
Tożsamości te wykażemy w ramach ćwiczeń do tego modułu.
Dla dowolnej liczby rzeczywistej mamy:
Warto porównać otrzymane wzory z poznanymi w szkole analogicznymi wzorami dla funkcji trygonometrycznych:
Podkreślmy kilka własności funkcji hiperbolicznych.
a) Funkcja sinus hiperboliczny jest bijekcją
b) Funkcja cosinus hiperboliczny jest określona na i przyjmuje wartości w przedziale
. Jest funkcją parzystą. Nie jest różnowartościowa. Jej zacieśnienie do przedziału
jest funkcją ściśle rosnącą.
c) Funkcja tangens hiperboliczny jest bijekcją na przedział . Jest nieparzysta, ściśle rosnąca.
d) Funkcja cotangens hiperboliczny jest bijekcją zbioru na zbiór
. Jest nieparzysta, ściśle malejąca w przedziale i w przedziale .
Określmy funkcje odwrotne do funkcji hiperbolicznych. Nazywamy je funkcjami area.
Rysunek am1w02.0280
Definicja 2.40.
a) Funkcję odwrotną do funkcji sinus hiperboliczny nazywamy area sinusem hiperbolicznym i oznaczamy
Rysunek am1w02.0290
b) Funkcję odwrotną do zacieśnienia funkcji cosinus hiperboliczny do przedziału nazywamy
area cosinusem hiperbolicznym i oznaczamy .
Rysunek am1w02.0300
c) Funkcję odwrotną do funkcji tangens hiperboliczny nazywamy area tangensem hiperbolicznym
i oznaczamy .
Rysunek am1w02.0310
d) Funkcję odwrotną do funkcji cotangens hiperboliczny nazywamy area cotangensem hiperbolicznym i oznaczamy
.
Zwróćmy uwagę na tożsamości (kilka podobnych wykażemy w ramach ćwiczeń):
Prawdziwe są następujące równości:
a) dla
b) dla
Dowód
a) Niech
. Wówczas dla mamy , czyli . Z jedynki trygonometrycznej wynika,żeb) Należy powtórzyć powyższe rozumowanie stosując jedynkę hiperboliczną zamiast jedynki trygonometrycznej.

Funkcje area można wyrazić także za pomocą logarytmu naturalnego.
Twierdzenie 2.42
Zachodzą następujące tożsamości:
a) dla
b) dla
c) dla
d) dla
Dowód twierdzenia 2.42.
a) Wyznaczamy zmienną
z równania: .MamyStąd
b) Podobnie jak w punkcie a) wyznaczamy zmienną z równania i otrzymujemy , czyli , dla .
c) Z równania dostajemy , czyli
dla
d) Pamiętając, że Parser nie mógł rozpoznać (nieznana funkcja „\ctgh”): {\displaystyle \displaystyle\ctgh x=\frac{1}{\tgh x}}
, podstawiamy w poprzedniej tożsamości
w miejsce zmiennej i otrzymujemy:
dla

W ramach ćwiczeń wykażemy zaskakującą - na pierwszy rzut oka - uwagę.
a) Dla dowolnej liczby
funkcjajest wielomianem zmiennej
b) Dla dowolnej liczby funkcja
jest wielomianem zmiennej
c) Dla dowolnej liczby funkcje oraz są
zacieśnieniami -- odpowiednio do przedziałów oraz tego samego wielomianu zmiennej , to znaczy dla dowolnej liczby istnieje funkcja wielomianowa
taka, że zachodzą równości
Definicja 2.44.
Wielomian
, o którym mowa w powyższej uwadze, którego zacieśnieniem do przedziału jest funkcja , nazywamy wielomianem Czebyszewa stopnia , .