Teoria informacji/TI Wykład 14: Różnice pomiędzy wersjami
Linia 188: | Linia 188: | ||
<center><math> | <center><math> | ||
p_U (y) = | p_U (y) = \sum_{v: U(v) = y } 2^{ - |v|} | ||
</math></center> | |||
stanowi prawdopodobieństwo zdarzenia, że maszyna <math>U </math> zatrzymuje się z wynikiem <math>y </math>. | |||
Jak pamiętamy z początkowych wykładów, dla skończonej przestrzeni probabilistycznej, | |||
optymalne kodowanie było osiągnięte wtedy, gdy | |||
<center><math> | |||
|\varphi (y) | \approx \log_2 (p (y) ) | |||
</math></center> | </math></center> |
Wersja z 20:01, 22 sty 2007
Stała Chaitina
Tak jak w poprzednim wykładzie, ustalamy jakieś bezprefiksowe kodowanie maszyn Turinga oraz bezprefiksową maszynę uniwersalną .
Definicja [Stała Chaitina]
Stałą Chaitina można interpretować jako prawdopodobieństwo, że losowo wybrane dane dla maszyny
spowodują jej zatrzymanie; innymi słowy, że losowo wybrany program (z danymi) się zatrzymuje.
Dokładniej, rozważmy zbiór nieskończonych ciągów zero-jedynkowych, . Dla , określamy
w szczególności . Funkcję można rozszerzyć na Borelowskie podzbiory tak, by stanowiła prawdopodobieństwo. Prawdopodobieśtwo to możemy też określić patrząc na ciąg jak na wynik nieskończonego procesu Bernoulliego , gdzie .
W szczególności stanowi prawdopodobieństwo zdarzenia, że ciąg zawiera prefiks , dla którego (z bezprefiksowości wynika, że jest co najwyżej jeden taki prefiks). Oczywiście konkretna wartość zależy od wyboru kodowania i maszyny uniwersalnej, ale jej istotne własności od tego nie zależą.
Twierdzenie [Własności ]
(1) .
(2) Istnieje maszyna Turinga z dodatkową taśmą nieskończoną, na której wypisane są kolejne cyfry binarnego rozwinięcia , która dla danego kodu maszyny odpowiada na pytanie, czy .
(3) Istnieje stała taka, że
Punkt (2) oznacza, że "znając" stałą Chaitina potrafilibyśmy rozstrzygać problem stopu, natomiast
(3) mówi nam, że z dokładnością do stałej, jest niekompresowalna.
Dowód
Ad 1. Ponieważ zbiór
jest bezprefiksowy, każdy skończony podzbiór , tworzy kod bezprefiksowy, a zatem z nierówności Krafta spełnia nierówność , co po przejściu do supremum daje żądaną nierówność.
Ad 2. Zanim opiszemy konstrukcję maszyny , zróbmy pewne obserwacje na temat liczby . Znanym problemem w dowodach własności liczb rzeczywistych jest, że a priori liczba może mieć dwie różne reprezentacje (w szczególności binarne). Działoby się tak, gdyby liczba była dwójkowo wymierna, tzn.
(a)
(b)
Jakkolwiek w przyszłości wykluczymy taką możliwość, w tej chwili musimy jeszcze wziąć ją pod uwagę. Otóż bez zmniejszenia ogólności możemy założyć, że dana jest w postaci (a). Istotnie, gdybyśmy mieli maszynę dla tego przypadku, to łatwo moglibyśmy ją zmodyfikować do maszyny , która radziłaby sobie z przypadkiem (b). Maszyna działałaby tak samo jak maszyna , z tym że począwszy od -szej cyfry , "widziałaby na odwrót", tzn. 0 traktowałaby jak 1 a 1 jak 0.
Jeśli wybierzemy wariant (a), lub jeśli Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \Omega } nie jest dwójkowo wymierna, to dla każdego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle n } istnieje skończony podzbiór Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle {\cal S}_n \subseteq L(U)} , taki że liczba wyznaczona przez pierwszych Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle n } cyfr Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \Omega } spełnia
(pamiętamy, że ).
Opiszemy teraz działanie maszyny . Jak zwykle w takich przypadkach, opiszemy algorytm, pozostawiając Czytelnikowi jego formalizację w języku maszyn Turinga. Jeśli na wejściu jest słowo , , maszyna symuluje działanie na , a równolegle przegląda kolejne słowa z , , powiedzmy w porządku wojskowym: i symuluje działanie na ruchem zygzakowym, podobnie jak w algorytmie z dowodu Faktu.
W trakcie swojego obliczenia, maszyna utrzymuje zmienną, powiedzmy
, której aktualną wartością jest (skończony) zbiór tych słów
dla których już udało się stwierdzić, że .
Zgodnie z powyższą oberwacją, w skończonym czasie jeden z dwóch przypadków ma miejsce.
(i) stwierdza, że ; wtedy daje odpowiedź TAK.
(ii) stwierdza, że
ale ; wtedy daje odpowiedź NIE.
Zauważmy, że w tej chwili możemy już wykluczyć możliwość, że jest liczbą dwójkowo wymierną. Istotnie, Czytelnik pamięta zapewne doskonale, że problem stopu jest nierozstrzygalny, tzn. nie istnieje maszyna bez dodatkowej taśmy, realizująca postulat z warunku (2). Gdyby jednak była dwójkowo wymierna, to opisaną wyżej konstrukcję maszyny można przeprowadzić bez reprezentowania liczby ; zamiast pobierać bity liczby z dodatkowej nieskończonej taśmy, maszyna mogłaby je sobie łatwo obliczyć. Podobny argument pokazuje znacznie więcej: nie jest liczba wymierną ani algebraiczną, ani w ogole "obliczalną" (zobacz Ćwiczenie).
Ad 3. Opiszemy działanie pewnej maszyny . Na słowie wejściowym ,
najpierw symuluje działanie maszyny uniwersalnej na
słowie . Dalszy opis prowadzimy przy założeniu, że obliczenie się zakończyło
z wynikiem i co więcej
stanowi pierwsze cyfr rozwinięcia binarnego , dla pewnego . Niech
Oczywiście, dla wielu nie będzie to prawdą; wtedy maszyna zgodnie z naszym opisem będzie wykonywać jakieś działania, których wynik nas nie interesuje. Ważne jest jednak, że dla pewnego istotnie zajdzie (z własności maszyny uniwersalnej).
Z kolei, podobnie jak maszyna w dowodzie punktu (2), maszyna ruchem zygzakowym przegląda kolejne słowa i symuluje działanie na na , gromadząc w zmiennej te słowa , dla których obliczenie już się zakończyło. Dodatkowo, dla każdego , zapamiętuje . Pamiętamy, że wykluczyliśmy już możliwość podwójnej reprezentacji . Dlatego też, po pewnym skończonym czasie stwierdzi, że
Niech będzie pierwszym w porządku wojskowym słowem takim, że , dla każdego . Zauważmy, że (z definicji ). Wtedy wreszcie nasza maszyna zatrzymuje się z wynikiem .
Zgodnie z Faktem z poprzedniego wykładu, istnieje stała , że
Ale (skoro wygenerowała z wejścia ). To daje nam
i nierówność ta zachodzi dla każdego , takiego że . A zatem
dla każdego , tak więc może być żądaną stałą.

Związek z entropią Shannona
Jeśli stałą Chaitina interpretujemy jako prawdopodobieństwo, że bezprefiksowa maszyna uniwersalna się zatrzymuje, to dla ,
stanowi prawdopodobieństwo zdarzenia, że maszyna zatrzymuje się z wynikiem .
Jak pamiętamy z początkowych wykładów, dla skończonej przestrzeni probabilistycznej, optymalne kodowanie było osiągnięte wtedy, gdy