Zadanie 1
Zapisać następujące stwierdzenia w języku logiki predykatów, wprowadzając niezbędne symbole i ustalając ich interpretację:
- ojciec każdego człowieka jest jego bezpośrednim przodkiem,
- jeśli ktoś jest przodkiem bezpośredniego przodka pewnej osoby, to jest także przodkiem tej osoby,
- każdy jest spokrewniony z każdym swoim przodkiem,
- każdy jest spokrewniony ze swoim bratem i siostrą,
- każdy jest spokrewniony z braćmi i siostrami wszystkich osób spokrewnionych ze sobą.
Zadanie 2
Dla bazy wiedzy dotyczącej świata klocków podanej w przykładzie wnioskowania znaleźć wyprowadzenia (jeśli istnieją) następujących formuł:



Zadanie 3
Sprawdzić, czy z bazy wiedzy
można wyprowadzić formuły
dla poniższych
i
. W razie potrzeby można wprowadzić dodatkowe reguły wnioskowania, sprawdzając uprzednio ich poprawność.
1.
|
|
|
|
|
|
|
|
|
|
|
|
2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.
|
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle L(x,y) \rightarrow Z(x,y)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(x,y) \land L(y,z) \rightarrow S(x,z)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \neg S(x,y) \rightarrow \neg L(x,y)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(x,y) \land L(y,x) \rightarrow L(x,y)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(x,y) \land L(x,z) \land L(z,y) \rightarrow L(x,y)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle L(x,f(x))}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle L(a,b)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle L(f(a),c)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle L(c,d)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(a,c)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(a,d)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Z(b,d)}
|
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \beta_1:\;\;L(b,c)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \beta_2:\;\;L(b,d)}
|
Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \beta_3:\;\;L(c,f(a))}
|
|
Zadanie 4
Które z następujących reguł wnioskowania są poprawne:
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \frac{\alpha\rightarrow\beta, \; \beta\rightarrow\gamma}{\alpha\rightarrow\gamma}}
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \frac{\alpha\rightarrow\beta, \; \beta\rightarrow\gamma, \; \alpha}{\gamma}}
- Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \frac{\alpha\lor\beta, \; \alpha\lor\neg\beta}{\alpha}}



Zadanie 5
Sprowadzić następujące formuły do postaci CNF:


Zadanie 6
Sprowadzić następujące formuły do postaci standardowej Skolema:


Zadanie 7
Dokonać unifikacji następujących par formuł:




Zadanie 8
Zweryfikować przedstawiony niżej przebieg wnioskowania prowadzonego przez człowieka zapisując bazę wiedzy w postaci formuł logiki predykatów i sprawdzając poprawność kroków dowodu.
- Wszystkie liczby podzielne przez 2 są parzyste.
Dowolna liczba o 1 większa od liczby parzystej nie jest parzysta.
Żadna liczba parzysta nie jest podzielna przez 3.
Niektóre liczby nieparzyste są podzielne przez 3.
Z powyższego wynika, że każda liczba podzielna przez 3 jest o 1 większa od pewnej liczby podzielnej przez 2.
- Nie wszystkie trójki punktów na płaszczyźnie są współliniowe.
Jeżeli trzy punkty na płaszczyźnie nie są współliniowe, to są wierzchołkami pewnego trójkąta.
Jeśli z czterech punktów żadne trzy nie są współliniowe, to są one wierzchołkami pewnego czworokąta.
Z powyższego wynika, że:
- istnieje trójkąt,
- istnieje czworokąt,
- jeśli ABC, BCD, ABD i ACD są trójkątami, to ABCD jest czworokątem.
Zadanie 9
Czy system wnioskowania z dwoma aksjomatami
oraz
i regułą wnioskowania modus ponens jest pełny?
Zadanie 10
Czy można sformułować pełny i poprawny system wnioskowania bez aksjomatów?
Zadanie 11
Czy można sformułować pełny i poprawny system wnioskowania bez reguł wnioskowania?
Zadanie 12
Zaproponować odpowiedniki reguł modus ponens i modus tollens dla formuł w postaci CNF.