Sztuczna inteligencja/SI Ćwiczenia 12: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
(Rozwiązanie zadania 2)
(Rozwiązanie zadania 3)
Linia 29: Linia 29:
 
'''Rozwiązanie'''  
 
'''Rozwiązanie'''  
 
<div class="mw-collapsible-content" style="display:none">
 
<div class="mw-collapsible-content" style="display:none">
 +
Odchylenie standardowe funkcji błędu średniej arytmetycznej wyjść obu sieci będzie równe <math>0,5\sqrt{\sigma_1^2 + \sigma_2^2}\,</math>, wartość średnia zaś równa będzie zero. Takie odchylenie standardowe jest na pewno mniejsze od <math>max(\sigma_1,\sigma_2)\,</math> (ponieważ jeśli <math>\sigma_1 > \sigma_2</math> to <math> \sigma_1^2 + \sigma_1^2 > \sigma_1^2 + \sigma_2^2</math> a zatem <math> \sigma_1 > {\sqrt{2} \over 2} * \sigma_1 > \sqrt{\sigma_1^2 + \sigma_2^2}</math>). Oznacza to, że korzystając ze średniej artytmetycznej wyjść dwóch sieci możemy otrzymać mniejsze odchylenie standardowe błędu, niż gdybyśmy korzystali z jednej tylko sieci. Jeśli nie wiemy, która sieć powoduje większy błąd aproksymacji, to w ten sposób możemy uniknąć ryzyka wybrania gorszej sieci kosztem niewybrania sieci lepszej.
 
</div>
 
</div>
 
</div>
 
</div>

Wersja z 20:38, 30 sie 2006

Zadanie 1

Narysować trójwymiarowy wykres przedstawiający funkcję realizowaną przez aproksymator - sieć neuronową z rozdziału 12.

Rozwiązanie

Zadanie 2

Z czego wynika potrzeba rozdzielenia zbioru danych na dane uczące i testowe?

Rozwiązanie

Zadanie 3

Załóżmy, że mamy dwie różne sieci neuronowe, uczone niezależnie od siebie na tym samym zbiorze uczącym. Załóżmy też, że rozkład błędu obu sieci na zbiorze testowym jest rozkładem normalnym o zerowej wartości oczekiwanej i standardowych odchyleniach odpowiednio: i . Jaki jest rozkład na zbiorze testowym wartości gdzie , oznaczają wyjścia obu sieci? Jak można wykorzystać ten wynik do poprawy jakości aproksymacji?

Rozwiązanie

Zadanie 4

Załóżmy, że mamy użyć sieci neuronowej do prognozowania przyszłej wartości pewnego procesu zmiennego w czasie, charakteryzującego się tym, że jego przyszłe wartości zależą od przeszłych zgodnie z równaniem:

gdzie oznacza czas, jest nieznaną funkcją, zaś stałą, określającą najdalszą zależność między przeszłością a przyszłością (taki proces jest przykładem tzw. szeregu czasowego).

Zaproponować sposób użycia sieci neuronowej do wykonania prognozy. Jak stworzyć zbiór trenujący dla sieci?

Rozwiązanie

Zadanie 5

Czym skutkuje obecność w zbiorze trenującym elementów powtarzających się?

Rozwiązanie

Zadanie 6

Funkcja błędu minimalizowana w czasie uczenia sieci neuronowej ma minima lokalne i punkty siodłowe (w których gradient zeruje się), a także obszary płaskie o bardzo małych wartościach modułu gradientu. Z czego wynikają te zjawiska? Dla jakich wartości wag da się je zaobserwować?

Rozwiązanie