Sztuczna inteligencja: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
(Zmiany nazw stron)
(Zmiany nazw stron)
Linia 44: Linia 44:
 
* [[Sztuczna_inteligencja/SI Moduł 6| Strategie przeszukiwania z funkcją oceny]] ([[Sztuczna_inteligencja/SI Ćwiczenia 6|Ćwiczenia]])
 
* [[Sztuczna_inteligencja/SI Moduł 6| Strategie przeszukiwania z funkcją oceny]] ([[Sztuczna_inteligencja/SI Ćwiczenia 6|Ćwiczenia]])
 
* [[Sztuczna_inteligencja/SI Moduł 7| Metody przeszukiwania losowego]] ([[Sztuczna_inteligencja/SI Ćwiczenia 7|Ćwiczenia]])
 
* [[Sztuczna_inteligencja/SI Moduł 7| Metody przeszukiwania losowego]] ([[Sztuczna_inteligencja/SI Ćwiczenia 7|Ćwiczenia]])
* [[Sztuczna_inteligencja/SI Moduł 8| Gry dwuosobowe]] ([[Sztuczna_inteligencja/SI Ćwiczenia 8|Ćwiczenia]])
+
* [[Sztuczna_inteligencja/SI Moduł 8 - Gry dwuosobowe| Gry dwuosobowe]] ([[Sztuczna_inteligencja/SI Ćwiczenia 8|Ćwiczenia]])
* [[Sztuczna_inteligencja/SI Moduł 9| Wnioskowanie indukcyjne]] ([[Sztuczna_inteligencja/SI Ćwiczenia 9|Ćwiczenia]])
+
* [[Sztuczna_inteligencja/SI Moduł 9 - Wnioskowanie indukcyjne| Wnioskowanie indukcyjne]] ([[Sztuczna_inteligencja/SI Ćwiczenia 9|Ćwiczenia]])
* [[Sztuczna_inteligencja/SI Moduł 10| Zadanie i metody klasyfikacji]] ([[Sztuczna_inteligencja/SI Ćwiczenia 10|Ćwiczenia]])
+
* [[Sztuczna_inteligencja/SI Moduł 10 - Zadanie i metody klasyfikacji| Zadanie i metody klasyfikacji]] ([[Sztuczna_inteligencja/SI Ćwiczenia 10|Ćwiczenia]])
* [[Sztuczna_inteligencja/SI Moduł 11| Zadanie i metody regresji ]] ([[Sztuczna_inteligencja/SI Ćwiczenia 11|Ćwiczenia]])
+
* [[Sztuczna_inteligencja/SI Moduł 11 - Zadanie i metody regresji| Zadanie i metody regresji ]] ([[Sztuczna_inteligencja/SI Ćwiczenia 11|Ćwiczenia]])
 
* [[Sztuczna_inteligencja/SI Moduł 12| Sieci neuronowe]] ([[Sztuczna_inteligencja/SI Ćwiczenia 12|Ćwiczenia]])
 
* [[Sztuczna_inteligencja/SI Moduł 12| Sieci neuronowe]] ([[Sztuczna_inteligencja/SI Ćwiczenia 12|Ćwiczenia]])
* [[Sztuczna_inteligencja/SI Moduł 13| Uczenie się ze wzmocnieniem]] ([[Sztuczna_inteligencja/SI Ćwiczenia 13|Ćwiczenia]])
+
* [[Sztuczna_inteligencja/SI Moduł 13 - Uczenie się ze wzmocnieniem| Uczenie się ze wzmocnieniem]] ([[Sztuczna_inteligencja/SI Ćwiczenia 13|Ćwiczenia]])

Wersja z 06:06, 26 lip 2006

Forma zajęć

Wykład (30 godzin) + projekt (15 godzin)

Opis

Celem wykładu jest zarysowanie podstawowych technik sztucznej inteligencji i ujęcie ich w kontekście algorytmicznym. Omówione będa w skrócie metody wnioskowania dedukcyjnego i indukcyjnego. Po zakończeniu wykładu słuchacz powinien biegle się posługiwać technikami sztucznej inteligencji we wspieraniu procesów podejmowania decyzji, takich jak np. prognozowanie, planowanie, diagnostyka, sterowanie. W ramach projektu słuchacze będą samodzielnie implementować jeden z omawianych algorytmów lub badać właściwości algorytmów dla różnych danych testowych korzystając z gotowych implementacji dosarczanych w niekomercyjnych środowiskach testowych (np. R, Octave, OpenOffice)

Sylabus

Autorzy

  • Jarosław Arabas
  • Paweł Cichosz

Wymagania wstępne

  • Analiza matematyczna
  • Logika matematyczna
  • Programowanie

Zawartość

  • Znaczenie inteligencji, inteligencja naturalna i sztuczna, zakres badań nad sztuczną inteligencją
  • Wnioskowanie - sformułowanie zadania, składnia i semantyka języka logiki, budowa systemu automatycznego wnioskowania
  • Język PROLOG jako przykładowy system wnioskowania, realizacja zasady wnioskowania automatycznego, przykładowe predykaty, PROLOG jako język deklaratywny
  • Rola niedoskonałej wiedzy we wnioskowaniu - wnioskowanie Bayesowskie, logika rozmyta
  • Wnioskowanie jako zadanie przeszukiwania przestrzeni, strategie przeszukiwania w głąb i wszerz
  • Metoda przeszukiwania przestrzeni najpierw najlepszy, rola i pożądane własciwości funkcji oceniającej i funkcji heurystycznej
  • Przegląd wybranych strategii przeszukiwania przestrzeni - metoda wzrostu, błądzenia przypadkowego symulowanego wyżarzania
  • Strategie gier dwuosobowych, algorytm MINMAX i przycinanie alfa-beta
  • Zadanie wnioskowania indukcyjnego, dyskusja własciwości atrybutów warunkowych, zasada uczenia z nauczycielem, pojęcie funkcji błędu, problem generalizacji, rola zbioru trenującego i testowego
  • Metody konstrukcji drzew decyzyjnych
  • Regresja liniowa i nieliniowa, reguła delta
  • Sieci neuronowe, problem uczenia perceptronu wielowarstwowego
  • Uczenie ze wzmocnieniem - sfromułowanie zadania, dyskusja funkcji wartości, uczenie ze wzmocnieniem jako metoda aproksymacji funkcji wartości

Literatura

  • G. Luger, Artificial intelligence, WNT, w przygotowaniu (lub wersja angielska).
  • P. Cichosz. Systemy uczące się. WNT, 2000.
  • S. Osowski. Sieci neuronowe w ujęciu algorytmicznym. WNT, 1999.
  • J. Arabas. Wykłady z algorytmów ewolucyjnych. WNT, 2001.

Moduły