Rachunek prawdopodobieństwa i statystyka/Ćwiczenia 1: Wstęp
Ćwiczenia
Ćwiczenie 1.1
Program MS Excel zawiera pewną liczbę funkcji i procedur statystycznych. Część z nich może być bardzo użyteczna.
Poniżej kopiujemy pewne fragmenty Pomocy programu Microsoft Excel.
W programie Microsoft Excel udostępniono szereg narzędzi do analizy statystycznej danych – zebranych w dodatku Analysis ToolPak – z którego można korzystać na różnych etapach opracowywania złożonych analiz statystycznych lub technicznych. Zadaniem użytkownika jest dostarczenie danych oraz innych niezbędnych parametrów; poszczególne narzędzia korzystają ze statystycznych lub inżynierskich makr funkcji i przedstawiają rezultaty w tabeli wyników. Niektóre spośród narzędzi oprócz tabeli tworzą także wykresy. (...). Aby zapoznać się z listą dostępnych narzędzi, kliknij polecenie Analiza danych w menu Narzędzia. Jeżeli polecenie Analiza danych nie jest dostępne w menu Narzędzia, musisz zainstalować dodatek Analysis ToolPak. (...). W programie Excel dostępnych jest wiele innych funkcji statystycznych, finansowych i inżynierskich. Niektóre funkcje statystyczne są wbudowane, a inne stają się dostępne po zainstalowaniu pakietu Analysis ToolPak. Warto przejrzeć listę dostępnych funkcji statystycznych.
W Dodatku Analiza danych dostępne są następujące procedury:
Analiza wariancji (anova) Korelacja, narzędzie analizy Kowariancja, narzędzie analizy Statystyka opisowa, narzędzie analizy Wygładzanie wykładnicze, narzędzie analizy Analiza Fouriera, narzędzie analizy Test F: z dwiema próbkami, narzędzie analizy Histogram, narzędzie analizy Średnia ruchoma, narzędzie analizy Wykonywanie analizy testu t Narzędzie do analizy generowania liczb losowych Ranga i percentyl, narzędzie analizy Regresja, narzędzie analizy Próbkowanie, narzędzie analizy Test z: z dwiema próbkami, narzędzie analizy.
Ćwiczenie 1.2
Program Maple zawiera pakiety procedur statystycznych. Oto pełna lista procedur pakietu , który w wersji Maple 10 zastępuje starszy pakiet (oczywiście, można w tej wersji korzystać także z pakietu ).
Ćwiczenie 1.3
Dane o skali nominalnej można prezentować graficznie. Często używanym sposobem jest tak zwany wykres kołowy (ciasteczko).
Dla następujących danych (patrz przykład 1.1 z wykładu):
wykres kołowy wygląda tak:
Ćwiczenie 1.4
W dniu 23 czerwca 2006, podczas sesji GPW w Warszawie zanotowano następujące zmiany cen akcji (w procentach):
- 4.6, - 4.5, - 4.6, 0, - 0.2, - 2.4, - 1.6, - 1.5, - 5.1, - 2.3, - 0.7, - 0.6, -
2.1, - 0.7, - 1.2, -5, 0.6, -3, -4, 0, 0.5, 2.3, - 1.5, - 4.7, - 1.1, 1.5, -
2.2, 0, 1.4, 0.3, 2.3, - 6.1, - 5.6, 2.7, 3.4, -2, - 0.3, 4.2, - 6.1, 0.9, -
2.3, 5.1, - 0.2, 0.6, -4, -2, 0.9, - 0.7, - 2.4, 2, - 2.9, 5.6, 0, - 0.9, 0, 0, 0
, - 2.2, - 0.8, - 1.1, - 2.2, 0, 0.9, 0.2, 1.3, 2.7, - 0.6, - 2.7, - 1.5, - 3.6
, 0, - 0.6, - 2.6, 0, - 4.3, 0, -4, 2.9, - 1.9, - 0.5, 0, 2.8, - 2.3, - 0.3, - 1.4,
1.9, 0, - 4.3, 0.4, 0, - 1.9, 2.2, 1.2, - 0.9, - 1.6, 0.8, 0, 0, - 1.3, 0.8, 0,
- 3.9, -6, - 3.2, - 6.1, - 0.8, 0, 0, - 0.7, - 3.3, - 0.4, 0, - 0.5, 1.9, - 0.6, 2,
0.8, - 4.7, - 0.2, 1.3, 2.3, - 3.8, - 0.3, 0, 0, 1, 1.5, 1.6, 0.5, - 3.3, -
0.7, 0, - 4.9, 0.5, 0, 3.9, - 3.8, - 1.3, 0, - 2.5, - 3.2, 0, - 1.1, - 1.4, - 1.5
, - 2.4, - 4.6, 1.9, - 2.4, - 3.6, 1, - 0.9, 0, - 1.9, -1, - 1.7, - 0.2, - 3.4, -
0.6, - 0.7, 1.4, 1.2, 0, 5.2, 0.9, 0.8, - 0.6, 1.9, 1.5, 5.1, 1.9, 4.2,
0.9, 1.3, 0.9, - 2.3, 1.5, - 0.5, 2.2, 0, 1.1, - 1.7, - 1.1, 0, - 0.3, - 1.2,
- 0.7, -1, 3.8, - 1.2, - 1.5, 2.4, 0, 0, -1, 0, - 1.2, 0.7, 0, 0.4, 0.4, - 0.3, -
1.4, 0.4, 0.4, - 6.4, - 6.3, 2, 0.8, 0.6, - 0.5, - 1.4, 0, - 0.9, - 3.3, - 1.4
, - 1.1, - 3.8, -1, - 1.6, 2.7, -3, 4.6, 0.9, 0, 0.3, - 1.3, - 5.8, - 0.6, 0.4,
0.7, 0, 3, 2, 0, 0, 4, -1, 9, -1, 4, 1, 3, 1, 7, -1, 8, -2, 0, 1, 3, 0, 0, 5, 0, 2.
Interpretacja graficzna danych surowych w postaci wykresu słupkowego nie jest zbyt pomocna, więc spróbujemy inaczej spojrzeć na te dane. Najpierw je posortujemy:
- 6.4, - 6.3, - 6.1, - 6.1, - 6.1, -6, - 5.8, - 5.6, - 5.1, -5, - 4.9, - 4.7, -
4.7, - 4.6, - 4.6, - 4.6, - 4.5, - 4.3, - 4.3, -4, -4, -4, - 3.9, - 3.8, - 3.8, -
3.8, - 3.6, - 3.6, - 3.4, - 3.3, - 3.3, - 3.3, - 3.2, - 3.2, -3, -3, - 2.9, - 2.7
, - 2.6, - 2.5, - 2.4, - 2.4, - 2.4, - 2.4, - 2.3, - 2.3, - 2.3, - 2.3, - 2.2, -
2.2, - 2.2, - 2.1, -2, -2, -2, - 1.9, - 1.9, - 1.9, - 1.7, - 1.7, - 1.6, - 1.6, -
1.6, - 1.5, - 1.5, - 1.5, - 1.5, - 1.5, - 1.4, - 1.4, - 1.4, - 1.4, - 1.4, - 1.3
, - 1.3, - 1.3, - 1.2, - 1.2, - 1.2, - 1.2, - 1.1, - 1.1, - 1.1, - 1.1, - 1.1, -1,
-1, -1, -1, -1, -1, -1, - 0.9, - 0.9, - 0.9, - 0.9, - 0.8, - 0.8, - 0.7, - 0.7, -
0.7, - 0.7, - 0.7, - 0.7, - 0.7, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6
, - 0.5, - 0.5, - 0.5, - 0.5, - 0.4, - 0.3, - 0.3, - 0.3, - 0.3, - 0.3, - 0.2, -
0.2, - 0.2, - 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4,
0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8,
0.8, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 1, 1, 1, 1, 1, 1.1, 1.2, 1.2, 1.3,
1.3, 1.3, 1.4, 1.4, 1.5, 1.5, 1.5, 1.5, 1.6, 1.9, 1.9, 1.9, 1.9, 1.9,
2, 2, 2, 2, 2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.4, 2.7, 2.7, 2.7, 2.8, 2.9, 3, 3, 3
, 3.4, 3.8, 3.9, 4, 4, 4.2, 4.2, 4.6, 5, 5.1, 5.1, 5.2, 5.6, 7, 8, 9.
Teraz wykres słupkowy ujawnia więcej informacji.
Widać, na przykład, że więcej było spadków niż wzrostów, ale kilka spółek miały większe wzrosty niż jakikolwiek zanotowany spadek.
Zbudujemy teraz szereg rozdzielczy. Wybieramy w tym celu punkty podziału na klasy: -8, - 7, ... 9, 10. Używając polecenia Maple (z pakietu ):
gdzie x oznacza ciąg naszych danych, otrzymujemy klasy wraz z ich licznościami:
Weight(-7 .. -6, 5),
Weight(-6 .. -5, 4),
Weight(-5 .. -4, 10),
Weight(-4 .. -3, 15),
Weight(-3 .. -2, 18),
Weight(-2 .. -1, 33),
Weight(-1 .. 0, 41),
Weight(0 .. 1, 72),
Weight(1 .. 2, 23),
Weight(2 .. 3, 16),
Weight(3 .. 4, 6),
Weight(4 .. 5, 5),
Weight(5 .. 6, 5),
Weight(6 .. 7, 0),
7 .. 8,
8 .. 9,
9 .. 10.
Liczności ostatnich trzech klas były równe 1 i dlatego Maple ich nie wyświetlił.
Maple stosuje klasy lewostronnie domknięte.
Możemy teraz narysować histogram wykazujący liczności klas:
<flash>file=Rp-1-15.swf|width=350|height=350</flash>
Wiele programów statystycznych rysuje histogram na podstawie danych surowych. Oto taki histogram - odpowiada on funkcji zdefiniowanej na wykładzie.
<flash>file=Rp-1-16.swf|width=350|height=350</flash>
Zadanie 1.1
Proszę ustalić z jakiego programu komputerowego będziemy korzystać w trakcie tego kursu.
Zadanie 1.2
Zastanawiano się nad możliwością wykorzystania w naszym kursie programu . Odwiedź następującą stronę:
Zadanie 1.3
Używając wybranego programu komputerowego wykonaj wykresy statystyczne omówione na ćwiczeniach.
Zadanie 1.4
Tworząc szereg rozdzielczy z danych surowych dla cechy w skali porządkowej, można w naturalny sposób zdefiniować pewną cechę, która posiada skalę nominalną. Wyjaśnij szczegóły.