Logika dla informatyków/Arytmentyka pierwszego rzędu

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Słowo arytmetyka używane jest w odniesieniu do różnych teorii dotyczących liczb naturalnych. Nasza sygnatura dla arytmetyki pierwszego rzędu składa się z dwuargumentowych symboli funkcyjnych i , oznaczających dodawanie i mnożenie,symbolu następnika s, oraz stałej 0.

Skoro przedmiotem arytmetyki są liczby naturalne, więc strukturę Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \mathfrak N = <\mathbb N, +,\cdot, 0, \su>} , ze "zwykłymi" operacjami arytmetycznymi nazwiemy standardowym modelem arytmetyki.Zbiór złożony ze wszystkich zdań prawdziwych w modelu nazywiemy zaś arytmetyką zupełną. Niestety,arytmetyka zupełna nie wyznacza modelu standardowego jednoznacznie.

Fakt 9.1

Dla dowolnej mocy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle {\frak m}\geq\aleph_0} istnieje niestandardowy model arytmetyki mocy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle {\frak m}} , tj. struktura mocy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle {\frak m}}

,
która jest elementarnie równoważna  ale nieizomorficzna z .


Dowód

Niech składa się ze wszystkich formuł postaci .Nietrudno pokazać, że każdy skończony podzbiór zbioru jest spełnialny w modelu  przez dostatecznie dużą wartość . Na mocy twierdzenia o zwartości (Twierdzenie 8.1),całość jest spełnialna w pewnym modelu  przez pewne wartościowanie . Wtedy spełnia te same zdania co , aleelement nie ma odpowiednika w modelu , bo każdy element można otrzymać z zera za pomocą nastepnika.Z Twierdzenia 8.2 wynika, że model  może być żądanej mocy.

End of proof.gif

Powyższy fakt to kolejny przykład wskazujący na ograniczenia siły wyrazu logiki pierwszego rzędu. Pora więc na pewne obserwacje o charakterze pozytywnym. Język arytmetyki jest tak elastyczny, że można w nim zdefiniować każdą funkcję obliczalną.

Twierdzenie 9.2 (Gödel)

Dla dowolnej częściowej funkcji obliczalnej istnieje taka formuła Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi} , że Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle FV(\var\varphi)\subseteq\{x_1,\ldots,x_k,y\}} oraz dla zachodzi równoważność

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle (\mathfrak N,\varrho)\models\var\varphi} wtedy i tylko wtedy, gdyd .

Dowód Twierdzenia 9.2 opuszczamy. Istotnym problemem technicznym w tym dowodzie jest konieczność kodowania ciągów liczb o nieznanej z góry długości. Używa się w tym celu tzw. chińskiego twierdzenia o resztach.


Wniosek 9.3

Teoria jest nierozstrzygalna. Co więcej, ani zbiór , ani jego dopełnienie nie są nawet rekurencyjnie przeliczalne.

Dowód

Z Twierdzenia 9.2 wynika w szczególności, że dla dowolnego zbioru rekurencyjnie przeliczalnego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle A\subseteq\NN} istnieje formuła Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi(x)} ,o jednej zmiennej wolnej , dla której

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle (\mathfrak N,x:n)\models\var\varphi} wtedy i tylko wtedy, gdy .

Korzystając z Lematu 2.10, możemy napisać to tak:

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi(\underline n)\in Th(\mathfrak N)} wtedy i tylko wtedy , gdy Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle n\in A} ,

gdzie symbol Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \underline n} oznacza term Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle s^n(0)} . A więc rozstrzygalność Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Th(\mathfrak N)} implikowałaby rozstrzygalność problemu stopu.

Abyudowodnić drugą część twierdzenia, przypomnijmy, że problem decyzyjny

Czy dana maszyna Turinga zatrzymuje się dla każdego słowawejściowego?

nie jest częściowo rozstrzygalny, i że to samo dotyczy jego dopełnienia. Jeśli zakodujemy nasz problem w postaci zbioru Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle A\subseteq\mathbb N} , to zbiórten będzie można zdefiniować formułą arytmetyki z dwoma kwantyfikatorami,wyrażającą własność

Dla każdego (kodu) słowa Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle w} istnieje kod obliczenia akceptującego to słowo.

Zbiór Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle A} jest więc też definiowalny formułą arytmetyki i byłby rekurencyjnie przeliczalny, gdyby taka była teoria Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle Th(\mathfrak N)} .

End of proof.gif

Twierdzenie Gödla o niezupełności

Skoro nie można zdefiniować jednoznacznie modelu standardowego(Fakt 9.1), może można chociaż, za pomocą odpowiednich aksjomatów,scharakteryzować zdania które są w nim prawdziwe? Przez PA (od "Peano Arithmetics") oznaczymy teorię o aksjomatach:

  • Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall x\forall y\,(s(x)=s(y)\to x=y)} ;
  • Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall x\neg (s(x)=0)}
  • Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall x\ (x+0 = x)} ;
  • Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall x\forall y\ (x+s(y) = s(x+y))} ;
  • ;
  • ;
  • Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall x (\var\varphi(x)\to\var\varphi(s(x)))\to(\var\varphi(0)\to\forall x\,\var\varphi(x))} ,

gdzie Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi(x)} może być dowolną formułą. Pierwsze dwa aksjomaty mówią, że operacja następnika jest różnowartościowa, a zero nie jest następnikiem żadnej liczby (to gwarantujenieskończoność każdego modelu). Kolejne dwa aksjomaty stanowią indukcyjną definicję dodawania, a następne dwa --- indukcyjną definicję mnożenia. Na końcu zamiast pojedynczego aksjomatu, mamy schemat aksjomatu, nazywany schematem indukcji. Zatem zbiór aksjomatów Peano jest w istocie nieskończony. Ale zbiór ten jest rekurencyjny: można efektywnie ustalić co jest aksjomatem a co nie jest.

Oczywiście standardowy model arytmetyki jest modelem arytmetyki Peano:

Inaczej mówiąc, wszystkie konsekwencje aksjomatów Peano (twierdzeniateorii PA) są prawdziwe w standardowym modelu. A na odwrót? Kiedyś przypuszczano, że PA jest teorią zupełną (por. Definicja 4.14), tj. że każde zdanie prawdziwe w jest twierdzeniem arytmetyki Peano.

Przypuszczenie to okazało sie fałszywe dzieki odkryciu dokonanemu przez Gödla, a mianowicie dzięki metodzie arytmetyzacji (numeracji Göodla), która pozwoliła na wyrażanie w języku arytmetyki faktów odnoszących się do samej arytmetyki, w szczególności istnienia lub nieistnienia dowodu dla danej formuły.

Twierdzenie 9.4 (Gödla o niezupełności

Istnieje takie zdanie w języku arytmetyki, że .

Dowód

Skoro zbiór aksjomatów PA jest rekurencyjny, więc zbiór wszystkich twierdzeń teorii PA (formuł, które można wyprowadzić z tych aksjomatów)jest rekurencyjnie przeliczalny. Aby bowiem stwierdzić, że dana formuła jest twierdzeniem PA, wystarczy systematycznie generować wszystkie możliwe dowody, aż wreszcie otrzymamy ten właściwy.

Gdyby PA była teorią zupełną, to dla dowolnego zdania Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi} , prędzej czy później znaleźlibyśmy albo dowód formuły Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi} albo formuły Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \neg\var\varphi} . A więc w takim przypadku PA byłabypo prostu rozstrzygalna.

Ale z drugiej strony, teoria zupełna jest identyczna z teorią każdego swojego modelu, więc PA byłaby identyczna z .Wówczas jednak teoria musiałaby być rozstrzygalna, co przeczy Wnioskowi 9.3.

End of proof.gif

Istota twierdzenia Göodla polega nie na tym, że akurat PA jest niezupełna.Jeśli zbiór aksjomatów PA rozszerzymy do innego (rekurencyjnie przeliczalnego)zbioru aksjomatów prawdziwych w to nadal będzie istniało zdanie niezależne od tych aksjomatów. Dowód pozostanie prawiebez zmian. A więc nie tylko PA, ale w ogóle każda efektywnie zadana teoria musi być niezupełna, jeśli tylko jest dostatecznie silna na to, aby dało sie w niej zinterpretować pojęcia arytmetyczne.

Przytoczony powyżej "współczesny" dowód twierdzenia Gödla wykorzystuje numerację gödlowską pośrednio, poprzez odwołanie się do pojęcia rozstrzygalnego problemu decyzyjnego. (Mówiąc o algorytmach generujących dowody, w istocie mamy na myśli pewne obliczenia na kodach takich dowodów, itd.) Oryginalny dowód Göodla posługiwał się numeracją bezpośrednio i przebiegał mniej więcejtak jak niżej. Na początek numerujemy wszystkie symbole języka arytmetyki:

Symbol: Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \forall\} ( )
Numer: 1 2 3 4 5 6 7 8 9 10 11 12

Każdemu ciągowi znaków, w tym każdej formule, dowodowi itp., można teraz przypisać kod liczbowy. Jeśli przez oznaczymy numer znaku , to kodem napisu "" jest liczba

gdzie oznacza -tą liczbę pierwszą. Odkrycie Gödla oparte jest na obserwacji, że własności formuł arytmetyki mogą być wyrażane w języku samej arytmetyki jako teorioliczbowe własności kodów. Zamiast np. mówić o własnościach formuły, można mówić o własnościach jej kodu, tj. liczby


Przypomnijmy, że symbol oznacza term . Oczywiście znaczeniem termu w jest liczba . Można teraz np. napisać taką formułę Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \var\varphi(x)} o jednej zmiennej wolnej , że dla dowolnego Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle n\in\NN} spełnianie Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \mathfrak N\models \var\varphi(\underline n)} ma miejsce wtedy i tylko wtedy, gdy

  • jest numerem pewnej formuły o co najwyżej jednej zmiennej wolnej


Oczywiście wiele rozmaitych własności syntaktycznych możemy wyrazić w podobny sposób.Przydatna jest np. formuła o takiej własności:

, wtedy i tylko wtedy, gdy

  • jest numerem pewnej formuły o jednej zmiennej wolnej,
  • jest numerem zdania .

W skrócie zapiszemy to tak:

, wtedy i tylko wtedy, gdy jest numerem zdania .

Nie każda własność formuł może jednak być wyrażona w języku arytmetyki.

Twierdzenie 9.5 (Tarskiego o niewyrażalności prawdy)

Nie istnieje formuła wyrażająca prawdziwość formuł w standardowym modelu, tj. taka formuła , że

wtedy i tylko wtedy, gdy jest numerem zdania prawdziwego w .

Dowód

{{{3}}} End of proof.gif

Uwaga: Twierdzenie Tarskiego podpowiada rozstrzygnięcie paradoksu kłamcy: Problem leży w niewyrażalności pojęcia "zdania prawdziwego",także w języku polskim. A skoro pytamy o własność, której nieumiemy zdefiniować, to nie dziwmy się, że nie ma odpowiedzi.


Twierdzenie Gödla o niezupełności arytmetyki otrzymamy po nieznacznej modyfikacji powyższego rozumowania. Zamiast niemożliwego do zdefiniowania pojęcia prawdy,użyjemy wyrażalnej własności "mieć dowód w arytmetycePeano". Otrzymamy w ten sposób zdanie , które mówi: ""Ja nie mam dowodu!".

Inny dowód Twierdzenia 9.4: Postępujemy jak w poprzednim dowodzie,używając formuły o własności

wtedy i tylko wtedy, gdy jest numerem pewnego zdania, które ma dowód w PA.

Otrzymamy w końcu taką konkluzję: wtedy i tylko wtedy, gdy .

Przyjmując , wnioskujemy, że ani ani nie może mieć dowodu w PA. Założenie prowadzi do sprzeczności, bo jeśli to . Ale założenie też prowadzi do sprzeczności, bo mielibyśmy z jednej strony ,a z drugiej . Uwaga: nietrudno zauważyć, że .


Rozumowanie Gödla prowadzi do jeszcze jednego ważnego wniosku, nazywanegodrugim twierdzeniem o niezupełności. Niech będzie numerem zdania "" i niech Con oznacza zdanie . Zdanie to wyraża niesprzeczność arytmetyki Peano. Rozumowanie podobne doużytego w dowodzie Twierdzenia 9.4 można ... sformalizować w języku arytmetyki. Otrzymamy konkluzję:

,

gdzie jest zdaniem z Twierdzenia 9.4. W konsekwencji otrzymujemy:

Wniosek 9.6

.

Niesprzeczności arytmetyki Peano nie można udowodnić na grunciesamej arytmetyki Peano (chyba, że PA jest sprzeczna). Ta sama konkluzja dotyczy każdej dostatecznie silnej teorii.

Na zakończenie powiedzmy jeszcze, że teoria PA jest nierozstrzygalna.Dowód tego faktu wymaga pewnego udoskonalenia Twierdzenia 9.2.Zamiast równoważności

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle (\mathfrak N\varrho)\models\var\varphi} wtedy i tylko wtedy, gdy ,

można mianowicie pokazać równoważność postaci

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle {\rm PA}\vdash_H\var\varphi(\underline n_1,\ldots,\underline n_k,\underline m)} wtedy i tylko wtedy, gdy .

Nierozstrzygalność PA można udowodnić metodą podobną doużytej w dowodzie Wniosku 9.3.