Analiza matematyczna 1/Wykład 15: Krzywe i bryły obrotowe
Krzywe i bryły obrotowe
W tym wykładzie wprowadzamy pojęcie krzywej i krzywej zwyczajnej. Definiujemy długość krzywej i krzywą prostowalną. Dowodzimy, że krzywa zwyczajna klasy
jest prostowalna. Wyprowadzamy wzór na długość krzywej i liczymy długości cykloidy i asteroidy. W drugiej części wykładu podajemy wzory na pola powierzchni i objętości brył obrotowych.Długość krzywej
Definicja 15.1.
Niech
Krzywą nazywamy zbiór punktówParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K \ =\ \big\{(x,y)\in\mathbb{R}^2:\ x=\varphi(t),\ y=\psi(t),\ t\in[a,b]\big\}, }
gdzie
są dwiema funkcjami ciągłymi. Piszemy:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K=K(\varphi,\psi):\ \left\{ \begin{array} {l} x=\varphi(t)\\ y=\psi(t) \end{array} \right. \qquad t\in[a,b]. }
<flash>file=AM1.M15.W.R01.swf|width=375|height=375</flash> <div.thumbcaption>Krzywa |
<flash>file=Am1.M15.W.R02.swf|width=375|height=375</flash> <div.thumbcaption>Parametryczny opis okręgu |
<flashwrap>file=AM1.M15.W.R03.swf|size=small</flashwrap>
<div.thumbcaption>Krzywa z punktem wielokrotnym (potrójnym)Przykład 15.2.
Zapiszmy parametryczne równanie okręgu o promieniu
w Jeśli jako parametr przyjmiemy kąt jaki tworzy promień poprowadzony do punktu na okręgu, to widzimy (patrz rysunek), że i Zatem następująca krzywa:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K:\ \left\{ \begin{array} {l} x=R\cos t\\ y=R\sin t \end{array} \right. \qquad t\in[0,2\pi] } opisuje okrąg.
Definicja 15.3.
Mówimy, że punkt
jest punktem wielokrotnym krzywej jeśli
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \exists t_1,t_2\in(a,b):\ t_1\ne t_2\quad\land\quad (x,y)=\big(\varphi(t_1),\psi(t_1)\big)=\big(\varphi(t_2),\psi(t_2)\big). }
Krzywą nazywamy zwyczajną,
jeśli nie zawiera punktów wielokrotnych, to znaczy
<flash>file=AM1.M15.W.R04.swf|width=250|height=250</flash>
<div.thumbcaption>Krzywe zwyczajneDefinicja 15.4.
Niech
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle a \ =\ t_0 \ <\ t_1 \ <\ \ldots \ <\ t_n \ =\ b }
będzie podziałem przedziału
Łamaną łączącą punkty:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \big(\varphi(t_0),\psi(t_0)\big), \ \ldots,\ \big(\varphi(t_n),\psi(t_n)\big) }
nazywamy łamaną wpisaną w krzywą
wchodzących w skład łamanej). . Przez oznaczamy długość łamanej (to znaczy sumę długości odcinkówDefinicja 15.5.
Długością krzywej
nazywamy liczbę:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ \sup_p l(p), }
<flashwrap>file=AM1.M15.W.R05.swf|size=small</flashwrap> <div.thumbcaption>Łamana wpisana w krzywą |
<flashwrap>file=AM1.M15.W.R06.swf|size=small</flashwrap> <div.thumbcaption>Łamana wpisana w krzywą |
Definicja 15.6.
Jeśli
, to mówimy, że krzywa jest prostowalna.Twierdzenie 15.7.
Niech
Wówczas krzywa jest prostowalna.
<flashwrap>file=AM1.M15.W.R07.swf|size=small</flashwrap>
<div.thumbcaption>Łamana wpisana w krzywąDowód 15.7. [nadobowiązkowy]
Niech
będzie dowolną łamaną wpisaną w krzywą to znaczy istnieje podziałParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle a \ =\ t_0 \ <\ t_1 \ <\ \ldots \ <\ t_n \ =\ b }
taki, że
jest łamaną o wierzchołkach dla gdzie
Długość łamanej
wyraża się wzorem:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(p) \ =\ \sum_{i=1}^n \sqrt{\big(x_i-x_{i-1}\big)^2+\big(y_i-y_{i-1}\big)^2}. }
Ponieważ twierdzenie 9.37.) mamy
więc z twierdzenia o wartości średniej (patrzParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x_i-x_{i-1} \ =\ \varphi(t_i)-\varphi(t_{i-1}) \ =\ \varphi'(\tau_i)\left(t_i-t_{i-1}\right),}
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle y_i-y_{i-1} \ =\ \psi(t_i)-\psi(t_{i-1}) \ =\ \psi'(\tau^*_i)\left(t_i-t_{i-1}\right),}
gdzie
Zatem
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(p) \ =\ \sum_{i=1}^n \sqrt{\varphi'(\tau_i)^2+\psi'(\tau^*_i)^2}\cdot\left(t_i-t_{i-1}\right). }
Ponieważ
Definiujemy
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle M \ =\ \sup_{t\in[a,b]}\varphi'(t), \qquad M^* \ =\ \sup_{t\in[a,b]}\psi'(t), }
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle m \ =\ \displaystyle\inf_{t\in[a,b]}\varphi'(t), \qquad m^* \ =\ \displaystyle\inf_{t\in[a,b]}\psi'(t). }
Zatem
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \sqrt{m^2+{m^*}^2}\cdot(b-a) \ \le\ l(p) \ \le\ \sqrt{M^2+{M^*}^2}\cdot(b-a). }
Ponieważ powyższa nierówność zachodzi dla dowolnej łamanej
wpisanej w krzywą więc przechodząc do supremum po wszystkich takich łamanych, dostajemyParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \sqrt{m^2+{m^*}^2}\cdot(b-a) \ \le\ l(K) \ \le\ \sqrt{M^2+{M^*}^2}\cdot(b-a), }
a zatem krzywa
jest prostowalna.
W powyższym twierdzeniu (jak i twierdzeniach następnych) zakładamy, że krzywa jest klasy
(to znaczy , są klasy ) W zastosowaniach okaże się jednak, że często będziemy mieli do czynienia z krzywymi, które są tylko ciągłe, zwyczajne oraz "kawałkami" klasy to znaczy krzywą można otrzymać jako "sklejenie" kilku krzywych klasy (przy sklejaniu początek następnej krzywej jest końcem poprzedniej). Wszystkie wypowiadane tu twierdzenia dla krzywych klasy stosują się także do krzywych kawałkami klasy<flashwrap>file=AM1.M15.W.R08.swf|size=small</flashwrap>
<div.thumbcaption>KrzywaDefinicja 15.9.
Niech
będzie krzywą. Zdefiniujmy:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K(t) \ \ \stackrel{df}{=}\ \ \bigg\{\big(\varphi(\tau),\psi(\tau)\big):\ \tau\in[a,t]\bigg\}, }
oraz
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle s(t) \ \ \stackrel{df}{=}\ \ l\big(K(t)\big)\quad } (długośćkrzywejK(t))
W szczególności
Twierdzenie 15.10.
Niech
Wówczas
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle s'(t) \ =\ \sqrt{\varphi'(t)^2+\psi'(t)^2} \qquad\forall\ t\in[a,b]. }
Dowód 15.10. [nadobowiązkowy]
Niech twierdzenia 15.7. dostajemy:
Analogicznie do ostatniego oszacowania w dowodzieParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \sqrt{m_h^2+{m_h^*}^2}\cdot h \ \le\ s(t_0+h)-s(t_0) \ \le\ \sqrt{M_h^2+{M_h^*}^2}\cdot h, }
gdzie
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle M_h \ =\ \sup_{t\in[t_0,t_0+h]}\varphi'(t), \qquad M_h^* \ =\ \sup_{t\in[t_0,t_0+h]}\psi'(t), }
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle m_h \ =\ \inf_{t\in[t_0,t_0+h]}\varphi'(t), \qquad m_h^* \ =\ \displaystyle\inf_{t\in[t_0,t_0+h]}\psi'(t). }
Dzielimy wszystkie strony powyższego oszacowania przez
dostając:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \sqrt{m_h^2+{m_h^*}^2} \ \le\ \frac{s(t_0+h)-s(t_0)}{h} \ \le\ \sqrt{M_h^2+{M_h^*}^2}. }
Ponieważ funkcje
i są ciągłe, więc dostajemyParser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned M_h & \xrightarrow[h\rightarrow 0]{} & \varphi'(t_0),\\ m_h & \xrightarrow[h\rightarrow 0]{} & \varphi'(t_0),\\ M_h^* & \xrightarrow[h\rightarrow 0]{} & \psi'(t_0),\\ m_h^* & \xrightarrow[h\rightarrow 0]{} & \psi'(t_0). \endaligned}
Z powyższych oszacowań oraz z twierdzenia o trzech ciągach dostajemy:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle s'(t_0) \ =\ \lim_{h\rightarrow 0}\frac{s(t_0+h)-s(t_0)}{h} \ =\ \sqrt{\varphi'(t_0)^2+\psi'(t_0)^2}. }

Twierdzenie 15.11. [O długości krzywej]
Niech
będą klasy oraz niech będzie krzywą zwyczajną. Wówczas długość krzywej wyraża się wzoremParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ \int\limits_a^b\sqrt{\varphi'(\tau)^2+\psi'(\tau)^2}\,d\tau. }
W szczególności, jeśli krzywa zadana jest wykresem funkcji
dla toParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ \int\limits_a^b\sqrt{1+f'(t)^2}\,dt. }
Dowód 15.11.
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ s(b) \ =\ s(b)-\underbrace{s(a)}\limits_{=0} \ =\ \int\limits_a^b s'(\tau)\,d\tau \ =\ \int\limits_a^b\sqrt{\varphi'(\tau)^2+\psi'(\tau)^2}\,d\tau. }
W drugim przypadku krzywą zadaną przez funkcję
możemy zapisać w postaci parametrycznej
i od razu otrzymujemy drugi ze wzorów.

Przykład 15.12.
Wyprowadzić wzór na długość krzywej zadanej w postaci biegunowej:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle r \ =\ g(\vartheta) \qquad \vartheta\in[\alpha,\beta]. }
Przedstawmy tę krzywą w postaci parametrycznej:
Liczymy
Zatem
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ \displaystyle\int\limits_{\alpha}^{\beta} \sqrt{g(\vartheta)^2+g'(\vartheta)^2}\,d\vartheta. }
<flashwrap>file=AM1.M15.W.R09.swf|size=small</flashwrap> <div.thumbcaption>Krzywa we współrzędnych biegunowych |
<flashwrap>file=AM1.M15.W.R10.swf|size=small</flashwrap> <div.thumbcaption>Cykloida |
Definicja 15.13.
Cykloidą nazywamy krzywą kreśloną
przez ustalony punkt na okręgu toczącym się po prostej<flash>file=AM1.M15.W.R11.swf|width=250|height=250</flash>
<div.thumbcaption>CykloidaPrzykład 15.14.
Wyprowadzić wzór parametryczny cykloidy.
Oznaczenia:
- promień okręgu;
- początkowy punkt styczności okręgu i prostej
;
- nowy punkt styczności;
- nowe położenie punktu ;
- parametr określający
położenie punktu
Liczymy współrzędne punktu
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x \ = \ OF \ =\ ON-FN \ =\ \widehat{NM}-MG \ =\ at-a\sin t, }
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle y \ = \ FM \ =\ NG \ =\ ND-GD \ =\ a-a\cos t. }
Zatem
lub
Przykład 15.15.
Obliczyć długość łuku cykloidy:
Parser nie mógł rozpoznać (nieznana funkcja „\begin{array}”): {\displaystyle \begin{array}{lll} \displaystyle \sqrt{x'(t)^2+y'(t)^2} &=& \sqrt{a^2(1-\cos t)^2+a^2\sin^2 t} \ =\ \sqrt{a^2-2a^2\cos t+a^2\cos^2 t+a^2\sin^2 t}\\ & =&\displaystyle \sqrt{2a^2(1-\cos t)} \ =\ \sqrt{4a^2\sin^2\frac{t}{2}} \ =\ 2a\bigg|\sin\frac{t}{2}\bigg|.\end{array} }
Zatem
Parser nie mógł rozpoznać (nieznana funkcja „\begin{array}”): {\displaystyle \displaystyle \begin{array}{lll}l(K) &=&\displaystyle\int\limits_0^{2\pi} \sqrt{x'(t)^2+y'(t)^2}\,dt \ =\ 2a\displaystyle\int\limits_0^{2\pi}\bigg|\sin\frac{t}{2}\,\bigg|dt\\ &=& 2a\displaystyle\int\limits_0^{2\pi}\sin\frac{t}{2}\,dt \ =\ -4a\cos\frac{t}{2}\bigg|_0^{2\pi} \ =\8a. \end{array} }
Przykład 15.16.
Obliczyć długość łuku asteroidy:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x^{\frac{2}{3}}+y^{\frac{2}{3}} \ =\ a^{\frac{2}{3}}. }
Równanie parametryczne asteroidy, to:
Liczymy
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \sqrt{x'(t)^2+y'(t)^2} \ =\ 3a\sin t\cos t \qquad\forall\ t\in[0,2\pi]. }
Zatem
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle l(K) \ =\ 4\displaystyle\int\limits_0^{\frac{\pi}{2}}3a\sin t\cos t\,dt \ =\ 6a. }
<flash>file=AM1.M15.W.R12.swf|width=272|height=272</flash> <div.thumbcaption>Asteroida |
<flashwrap>file=AM1.M15.W.R13.swf|size=small</flashwrap> <div.thumbcaption>Asteroida |
<flashwrap>file=AM1.M15.W.R14.swf|size=small</flashwrap> <div.thumbcaption>Asteroida |
Całka krzywoliniowa
Niech
będzie krzywą klasy :Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K \ =\ \big\{(x,y)\in\mathbb{R}^2:\ x=\varphi(t),\ y=\psi(t),\ t\in[a,b]\big\}, }
Przypuśćmy, że określona jest funkcja ciągła
to znaczy funkcja, która każdemu punktowi krzywej przyporządkowuje pewną wartość rzeczywistą Okazuje się, że dla takich funkcji możemy także zdefiniować całkę oznaczoną, to znaczy całkę z funkcji po krzywejCałkę tę wprowadza się analogicznie jak całkę Riemanna na odcinku. Pominiemy to jednak w tym miejscu, podając jedynie wzór końcowy na obliczanie takiej całki:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \displaystyle\int\limits_K f(x,y)\,ds \ =\ \displaystyle\int\limits_a^b f\big(\varphi(t),\psi(t)\big)\sqrt{\varphi'(t)^2+\psi'(t)^2}\,dt. }
Tę całkę stosuje się w fizyce na przykład do obliczania masy i środka ciężkości krzywej (pręta, którego wszystkie wymiary poza długością są pomijalne).
Jeśli mamy daną krzywą (pręt)
zadaną jak wyżej, o gęstości w każdym jej punkcie danej funkcją ciągłą to masa tego pręta wyraża się wzoremParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle m \ =\ \displaystyle\int\limits_K \varrho(x,y)\,ds. }
Współrzędne środka ciężkości pręta
możemy policzyć ze wzorówParser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned x_0 & = & \frac{1}{m}\displaystyle\int\limits_K x\cdot \varrho(x,y)\,ds,\\ x_0 & = & \frac{1}{m}\displaystyle\int\limits_K y\cdot \varrho(x,y)\,ds. \endaligned}
Przykład 15.17.
Obliczyć masę pręta półkolistego
o gęstościMasa krzywej o gęstości
dana jest wzoremParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle m \ =\ \displaystyle\int\limits_K \varrho(x,y)\,ds \ =\ \displaystyle\int\limits_K y^2\,ds. }
Stosując wzór na całkę krzywoliniową oraz korzystając z parametryzacji półokręgu:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K=K(\varphi,\psi):\ \left\{ \begin{array} {l} x=\varphi(t)=R\cos t\\ y=\psi(t)=R\sin t \end{array} \right. \qquad t\in[0,\pi], }
mamy
Parser nie mógł rozpoznać (nieznana funkcja „\begin{array}”): {\displaystyle \begin{array}{lll} \displaystyle m &=& \displaystyle\int\limits_0^{\pi}R^2\sin^2 t\sqrt{(-R\sin t)^2+(R\cos t)^2}\,dt \ =\ R^3\displaystyle\int\limits_0^{\pi}\sin^2 t\,dt\\ &=& R^3\bigg[\frac{t}{2}-\frac{1}{4}\sin 2t\bigg]_0^{\pi} \ =\ \frac{R^3\pi}{2}.\end{array} }
Odpowiedź:
Masa pręta wynosi.
Przykład 15.18.
Obliczyć masę i współrzędne środka ciężkości odcinka
łączącego punkt z punktem o gęstości wprost proporcjonalnej do odległości punktu od środka układu i równej w punkcieSkoro gęstość
jest proporcjonalna do odległości punktu od środka układu i wynosi w punkcie toParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \varrho(x,t) \ =\ c\sqrt{x^2+y^2} \quad } oraz
stąd
Parametryzacją odcinka jest na przykładParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K=K(\varphi,\psi):\ \left\{ \begin{array} {l} x=\varphi(t)=t\\ y=\psi(t)=t \end{array} \right. \qquad t\in[0,1], }
zatem masa wynosi
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle m \ =\ \displaystyle\int\limits_K\sqrt{x^2+y^2}\,ds \ =\ \displaystyle\int\limits_0^1\sqrt{t^2+t^2}\sqrt{2}\,dt \ =\ 2\displaystyle\int\limits_0^1t\,dt \ =\ t^2\bigg|_0^1 \ =\ 1. }
Pierwszą współrzędną środka ciężkości liczymy ze wzoru
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x_0 \ =\ \frac{1}{m}\displaystyle\int\limits_K x\cdot \varrho(x,y)\,ds \ =\ \displaystyle\int\limits_0^1 t\cdot\sqrt{2t^2}\sqrt{2}\,dt \ =\ 2\displaystyle\int\limits_0^1 t^2\,dt \ =\ \frac{2}{3}t^3\bigg|_0^1 \ =\ \frac{2}{3}. }
Pole powierzchni i objętość bryły obrotowej
W dalszej części wykładu będziemy zakładać, że krzywe są klasy
Podamy liczne wzory na obliczanie pól powierzchni i objętości brył obrotowych, w większości pozostawiając je bez dowodów (podając natomiast pewne ich uzasadnienia).<flash>file=AM1.M15.W.R15.swf|width=250|height=250</flash>
<div.thumbcaption>Pole między wykresami funkcjiZ poprzedniego wykładu znamy już związek całki Riemanna z polem obszaru ograniczonego wykresami funkcji. Dla porządku przypomnijmy ten związek.
Jeśli trapez krzywoliniowy jest ograniczony z góry i z dołu krzywymi:
i
to pole tego trapezu wynosi:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |P| \ =\ \displaystyle\int\limits_a^b\big[f_1(x)-f_2(x)\big]\,dx }
Uzasadnienie: Wzór ten wynika bezpośrednio z geometrycznej interpretacji całki oznaczonej.
Twierdzenie 15.20.
Pole obszaru pod wykresem krzywej zadanej w postaci parametrycznej
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K:\ \left\{ \begin{array} {l} x=\varphi(t)\\ y=\psi(t) \end{array} \right., \qquad } dla
wynosi
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |P| \ =\ \displaystyle\int\limits_{\alpha}^{\beta}\psi(t)\varphi'(t)\,dt. }
Uzasadnienie: Wzór ten jest konsekwencją wzoru z uwagi 15.19. i twierdzenia o całkowaniu przez podstawienie.
<flashwrap>file=AM1.M15.W.R16.swf|size=small</flashwrap>
<div.thumbcaption>Pole obszaru ograniczonego półprostymi i krzywą zadaną we współrzędnych biegunowych<flash>file=AM1.M15.W.R17.swf|width=250|height=250</flash>
<div.thumbcaption>Trójkąt krzywoliniowyTwierdzenie 15.21.
Jeśli obszar jest ograniczony odcinkami
i (gdzie ) oraz krzywą daną w postaci biegunowejParser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle r \ =\ g(\vartheta), \quad \vartheta\in[\vartheta_1,\vartheta_2], }
to pole tego obszaru wynosi:
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |P| \ =\ \frac{1}{2}\displaystyle\int\limits_{\vartheta_1}^{\vartheta_2}\big[g(\vartheta)\big]^2\,d\vartheta. }
Uzasadnienie: Obszar dzielimy na trójkąty krzywoliniowe jak na rysunku
Oznaczając przez
pole trójkąta krzywoliniowego, mamy
(dla małych kątów definicja 14.4.) i przechodząc do granicy, dostajemy powyższy wzór.
zachodzi ). Sumując pola trójkątów (analogicznie jak sumy całkowe w całce Riemanna; patrzTwierdzenie 15.22.
(1) Pole powierzchni powstałej z obrotu krzywej
dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |P| \ =\ 2\pi \displaystyle\int\limits_a^b \big[f(x)\big] \sqrt{1+f'(x)^2}\,dx. }
Wzór ten pozostawiamy bez uzasadnienia.
(2)
Pole powierzchni powstałej z obrotu krzywej
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K:\ \left\{ \begin{array} {l} x=\varphi(t)\\ y=\psi(t) \end{array} \right. \quad } dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |P| \ =\ 2\pi \displaystyle\int\limits_{\alpha}^{\beta} \big[\psi(t)\big] \sqrt{\varphi'(t)^2+\psi'(t)^2}\,dt. }
<flashwrap>file=AM1.M15.W.R18.swf|size=small</flashwrap> <div.thumbcaption>Powierzchnia powstała przez obrót krzywej dookoła osi |
<flashwrap>file=AM1.M15.W.R21.swf|size=small</flashwrap> <div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osi |
<flashwrap>file=AM1.M15.W.R19.swf|size=small</flashwrap> <div.thumbcaption>Powierzchnia powstała przez obrót krzywej dookoła osi |
<flashwrap>file=AM1.M15.W.R20.swf|size=small</flashwrap> <div.thumbcaption>Powierzchnia powstała przez obrót krzywej dookoła osi |
Twierdzenie 15.23.
(1) Objętość bryły powstałej z obrotu obszaru "pod krzywą"
dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |V_x| \ =\ \pi \displaystyle\int\limits_a^b f(x)^2\,dx. }
Uzasadnienie: Weźmy podział odcinka
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle P:\ a \ =\ x_0 \ <\ x_1 \ <\ \ldots \ <\ x_n \ =\ b }
oraz podzielmy bryłę na "plasterki",
to znaczy na bryły powstałe przez
obrót obszaru pod wykresem funkcji
(2)
Objętość bryły powstałej z obrotu
obszaru "pod krzywą"
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K:\ \left\{ \begin{array} {l} x=\varphi(t)\\ y=\psi(t) \end{array} \right. \quad } dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |V_x| \ =\ \pi \displaystyle\int\limits_{\alpha}^{\beta} \psi(t)^2\varphi'(t)\,dt. }
Uzasadnienie: Wzór powyższy jest konsekwencją poprzedniego wzoru oraz twierdzenia o całkowaniu przez podstawienie.
<flashwrap>file=AM1.M15.W.R22.swf|size=small</flashwrap> <div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osi |
<flashwrap>file=AM1.M15.W.R23.swf|size=small</flashwrap> <div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osi |
<flashwrap>file=AM1.M15.W.R24.swf|size=small</flashwrap>
<div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osiTwierdzenie 15.24.
(1) Objętość bryły powstałej z obrotu obszaru "pod krzywą"
dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |V_y| \ =\ 2\pi \displaystyle\int\limits_a^b x\,f(x)\,dx. }
Uzasadnienie: Weźmy podział odcinka
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle P:\ a \ =\ x_0 \ <\ x_1 \ <\ \ldots \ <\ x_n \ =\ b }
oraz podzielmy bryłę na "cylindry"
powstałe przez
obrót obszaru pod wykresem funkcji
(2)
Objętość bryły powstałej z obrotu
obszaru "pod krzywą"
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle K:\ \left\{ \begin{array} {l} x=\varphi(t)\\ y=\psi(t) \end{array} \right. \quad } dla
wokół osi
:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle |V_y| \ =\ 2\pi \displaystyle\int\limits_{\alpha}^{\beta} \varphi(t)\psi(t)\varphi'(t)\,dt. }
<flashwrap>file=AM1.M15.W.R25.swf|size=small</flashwrap> <div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osi |
<flashwrap>file=AM1.M15.W.R26.swf|size=small</flashwrap> <div.thumbcaption>Bryła powstała przez obrót obszaru "pod" wykresem krzywej wokół osi |
<flashwrap>file=AM1.M15.W.R27.swf|size=small</flashwrap>
<div.thumbcaption>TorusPrzykład 15.25.
Obliczyć objętość torusa powstałego przez obrót koła
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x^2+(y-a)^2 \ \le\ r^2 \qquad (0<r<a) }
wokół osi
Parser nie mógł rozpoznać (nieznana funkcja „\begin{array}”): {\displaystyle \begin{array}{lll} \displaystyle |V_x| & = & \pi\displaystyle\int\limits_{-r}^r \bigg[\big(a+\sqrt{r^2-x^2}\big)^2 -\big(a-\sqrt{r^2-x^2}\big)^2\bigg]\,dx \ =\ 4\pi a\displaystyle\int\limits_{-r}^r \sqrt{r^2-x^2}\,dx\\ & \stackrel{(\bigstar)}{=} & 4\pi a \bigg[\frac{r^2}{2}\arcsin\frac{x}{r}+\frac{x}{2}\sqrt{r^2-x^2}\bigg]_{-r}^r =\ 4\pi a \bigg[\frac{r^2}{2}\cdot\frac{\pi}{2}+\frac{r^2}{2}\cdot\frac{\pi}{2}\bigg] \ =\ 4\pi a\frac{r^2\pi}{2} \ =\ 2\pi^2 ar^2, \end{array}}
gdzie wykorzystano następującą całkę:
Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned (\bigstar)\quad I & = & \int\sqrt{r^2-x^2}\,dx \ =\ \int\frac{r^2-x^2}{\sqrt{r^2-x^2}}\,dx \ =\ r^2\underbrace{\int\frac{dx}{\sqrt{r^2-x^2}}}_{I_1} -\underbrace{\int\frac{x^2 dx}{\sqrt{r^2-x^2}}}_{I_2}. \endaligned}
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle I_1 \ =\ \arcsin\frac{x}{|r|}+c. }
Teraz liczymy całkę
inaczej:Parser nie mógł rozpoznać (nieznana funkcja „\begin{array}”): {\displaystyle \begin{array}{lll} \displaystyle I& = &\int\sqrt{r^2-x^2}\,dx \ \begin{array}{c}\textrm{części}\\=\end{array} x\sqrt{r^2-x^2} -\int x\frac{-2x}{2\sqrt{r^2-x^2}}dx\\ & =& x\sqrt{r^2-x^2} +\underbrace{\int\frac{x^2}{\sqrt{r^2-x^2}}\,dx}_{=I_2}= x\sqrt{r^2-x^2}+I_2. \end{array}}
Porównując to z
otrzymujemy:Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle r^2I_1-I_2 \ =\ x\sqrt{r^2-x^2}+I_2, }
stąd
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle 2I_2 \ =\ r^2I_1-x\sqrt{r^2-x^2} \ =\ r^2\arcsin\frac{x}{r} -x\sqrt{r^2-x^2}, }
zatem
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle I_2 \ =\ \frac{r^2}{2}\arcsin\frac{x}{r} -\frac{x}{2}\sqrt{r^2-x^2}. }
Wstawiając do
otrzymujemy:Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned I & = & r^2\arcsin\frac{x}{r} -\frac{1}{2}r^2\arcsin\frac{x}{r} +\frac{1}{2}x\sqrt{r^2-x^2}+c \ =\ \frac{r^2}{2}\arcsin\frac{x}{r} +\frac{x}{2}\sqrt{r^2-x^2}+c. \endaligned}