Analiza matematyczna 1/Test 9: Pochodna funkcji jednej zmiennej: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian
 
Nie podano opisu zmian
Linia 29: Linia 29:
Funkcja
Funkcja


<center><math>\displaystyle f(x)=\begincases &x^3\sin (\frac 1x), \ \ \text{dla} \ \ x\neq 0, \\ &0, \ \ \text {dla} \ \ x=0, \endcases
<center><math>\displaystyle f(x)=\left \{\begin{array} {lll} x^3\sin (\frac 1x), \ \ \text{dla} \ \ x\neq 0, \\ 0, \ \ \text {dla} \ \ x=0, \end{array}
</math></center>
</math></center>



Wersja z 17:16, 8 paź 2006

Pochodna funkcji w przedziale jest równa

.


Styczna do wykresu funkcji w punkcie ma równanie

.


Funkcja

Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle f(x)=\left \{\begin{array} {lll} x^3\sin (\frac 1x), \ \ \text{dla} \ \ x\neq 0, \\ 0, \ \ \text {dla} \ \ x=0, \end{array} }


jest ciągła

ma pochodną w punkcie

ma ciągłą pochodną w punkcie .


Równanie

nie ma rozwiązań dla

nie ma rozwiązań dla

ma dwa rozwiązania dla .


Pochodna funkcji jest równa

.


Niech i niech będzie funkcją ciągłą w przedziale taką, że istnieje granica

Wtedy

istnieje pochodna funkcji w punkcie i

jeśli istnieje pochodna funkcji Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle f} w punkcie Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle x_0} , to Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle \displaystyle f'(x_0)=A}

jeśli istnieje pochodna funkcji Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle f} w punkcie Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle x_0} , to Parser nie mógł rozpoznać (SVG (MathML może zostać włączone przez wtyczkę w przeglądarce): Nieprawidłowa odpowiedź („Math extension cannot connect to Restbase.”) z serwera „https://wazniak.mimuw.edu.pl/api/rest_v1/”:): {\displaystyle \displaystyle \displaystyle f'(x_0)=\frac A2} .