
1

ZSBD – ćwiczenie 6

Obiektowe systemy
zarządzania bazą danych.

Praca ze złożonymi
strukturami danych w

OSZBD db4o.

ZSBD – ćwiczenie 6

Zaawansowane systemy baz danych - ZSBD

Dotychczasowa praca z obiektowym systemem zarządzania bazą danych db4o nie
różniła się specjalnie od pracy z relacyjnym systemem zarządzania bazą danych. W
wyniku wykonania zapytania, otrzymywaliśmy obiekty jednego typu, które spełniały
warunki zapytania. Obiekty te nie różniły się również w szczególny sposób od krotek.
Celem obecnych zajęć jest demonstracja możliwości obiektowych systemów zarządzania
bazą danych, w sytuacji kiedy aplikacja korzysta z bardziej złożonych, dynamicznych
struktur danych. W ramach ćwiczenia poznacie państwo sposoby zapisu, wyszukiwania,
odczytu, modyfikacji i usuwania złożonych struktur danych. Dowiecie się również jakie
problemy są z tym związane i jak je rozwiązywać.

Wymagania:

Do wykonania ćwiczenia konieczna jest podstawowa znajomość środowiska Eclipse
(pokazanego na poprzednich ćwiczeniach) i wiedza podstawowa z zakresu
programowania w języku Java, oraz wykonanie piątego ćwiczenia z ZSBD.

2

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (2)

Plan ćwiczenia

• Wprowadzenie do laboratorium i nowy schemat klas.
• Przykładowa złożona struktura danych.
• Zapisywanie złożonych struktur danych do baz danych.
• Odczytywanie złożonych struktur danych z baz danych.
• Modyfikacja złożonych struktur danych w bazie danych.
• Usuwanie złożonych struktur danych z bazy danych.
• Zadania.
• Podsumowanie.

Ćwiczenie zostanie rozpoczęte od przedstawienia nowego schematu klas, który będzie
wykorzystywany w przy omawianiu nowej tematyki. Dla nowego schematu zostanie
również przedstawiona przykładowa struktura danych, która będzie wykorzystana
demonstracji mechanizmów obsługi złożonych struktur danych w OSZBD db4o.
Następnie zostaną opisane mechanizmy db4o pozwalające na zapisywanie,
odszukiwanie i odczytywanie, modyfikację, i usuwanie złożonych struktur danych. Nie jest
konieczne wykonywanie fragmentów programów demonstrujących poszczególne
mechanizmy, które zostaną przedstawione na slajdach. Jest to jednak silnie zalecane,
gdyż umożliwi państwu lepsze zrozumienie omawianej tematyki. Na końcu zajęć zostaną
przedstawione zadania do samodzielnego wykonania. Ćwiczenie zakończymy slajdem
podsumowującym przedstawiony materiał.

3

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (3)

Wprowadzenie do laboratorium

Shape

Triangle

+side: int

Rectangle

+side1: int
+side2: int

Circle

+radius: int

Group

1

1..*

VisibleShape

+color: String

Picture

+name: String
0..*1

3 2

4
1

Tym co stanowi o sile obiektowych systemów zarządzania bazą danych jest nie tylko
możliwość zapisywania pojedynczych obiektów do bazy danych, ale również możliwość
łatwego i szybkiego zapisywania całych, złożonych struktur danych zbudowanych z
obiektów powiązanych ze sobą powiązaniami referencyjnymi, oraz ich późniejszego
odczytywania, modyfikacji i usuwania. Taką funkcjonalność posiada również OSZBD
db4o.
W celu demonstracji sposobu obsługi złożonych struktur danych przez OSZBD db4o,
należy wprowadzić kilka zmian do schematu klas, który powstał w czasie wykonywania
poprzedniego ćwiczenia. W poprzednim ćwiczeniu zostały zaimplementowane klasy:
VisibleShape, Triangle, Rectangle i Circle (1). Pierwszą modyfikacją, jaką należy
wprowadzić, jest implementacja abstrakcyjnej klasy Shape (2), z której powinna
dziedziczyć klasa VisibleShape. W kolejnym kroku należy zaimplementować klasę
Picture, która posiada pole name określające nazwę rysunku, i kolekcję referencji na
obiekty klasy Shape. Klasa Picture reprezentuje zatem zbiór figur geometrycznych
tworzących rysunek. Ostatnią klasą, jaką należy dodać, jest klasa Group, która
dziedziczy z klasy Shape. Klasa Group powinna również mieć pole, które jest kolekcją
referencji na obiekty klasy Shape. Klasa ta reprezentuje zatem grupę figur
geometrycznych tworzących razem pewną logiczną całość. Ponieważ klasa Group
dziedziczy z klasy Shape, to możliwe jest tworzenie rekursywnych struktur danych, w
których grupy figur znajdują się w innych grupach.

4

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (4)

abstract class Shape {
}

import java.util.Vector;

Nowy schemat klas – kod

1

2

class VisibleShape extends Shape{
public String color;
public VisibleShape() {}
public VisibleShape(
String color) {
this.color=color;

}
}

3

Na tym i kolejnym slajdzie przedstawiono implementacje klas, które będą potrzebne do
pokazania sposobu zapisywania i odczytywania złożonych struktur danych do bazy
danych db4o. Ponieważ będziemy wykorzystywać kolekcje (klasy Picture i Group),
musimy zaimportować jedną z klas, która reprezentuje taką kolekcje (1). Pierwszą klasą
jaką należy zaimplementować, podczas wprowadzania zmian, jest abstrakcyjna klasa
Shape (2). Z klasy tej dziedziczą wszystkie klasy, które reprezentują figury na rysunku.
Należy również wprowadzić modyfikację do klasy VisibleShape polegającą na uczynieniu
klasy Shape nadklasą klasy VisibleShape (3). ...

5

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (5)

Nowy schemat klas – kod – cd.

class Picture {
public List<Shape> shapes;
public String name;
public Picture(String name) {

this.name=name;
shapes=new Vector<Shape>();

}
}

4

class Group extends Shape {
public List<Shape> shapes;
public Group() {
shapes=new Vector<Shape>();

}
}

5

... Następnie, należy zaimplementować klasę Picture, która reprezentuje pojedynczy
rysunek w bazie danych i przechowuje kolekcję referencji na obiekty klasy Shape (4).
Ostatecznie, implementowana jest klasa Group, która służy do logicznego grupowania
figur na rysunku (5).

6

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (6)

Nowy schemat klas – dane

bigBlueTriangle : Triangle

side = 10
color = Blue

smallRedRectangle : Rectangle

side1 = 1
side2 = 2
color = Red

group1 : Group

group2 : Group

mediumGreenCircle : Circle

radius = 5
color = Green

bigWhiteCircle : Circle

radius = 10
color = White

simplePicture : Picture

name = Very Simple Picture

1

2

3

45

6 7

Na slajdzie przedstawiono przykładową strukturę danych, którą można zbudować
wykorzystując klasy zdefiniowane na poprzednich slajdach. Będzie stanowić ona punkt
wyjściowy do dalszego omawiania materiału. Struktura zawiera obiekty składające się na
jeden rysunek o nazwie ”Very Simple Picture” (1). Na rysunek składa się obiekt
reprezentujący białe kółko (2), oraz grupa figur (3) zawierająca dwa obiekty: zielone kółko
(4) i grupę (5) z dwoma figurami: czerwonym prostokątem (6) i niebieskim trójkątem (7).
Kod tworzący taką strukturę został przedstawiony na kolejnym slajdzie.

7

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (7)

Nowy schemat klas – dane – cd.

Rectangle smallRedRectangle=new Rectangle("Red",1,2);
Triangle bigBlueTriangle=new Triangle("Blue",10);
Group group1=new Group();
group1.shapes.add(smallRedRectangle);
group1.shapes.add(bigBlueTriangle);

Circle mediumGreenCircle=new Circle("Green",5);
Group group2=new Group();
group2.shapes.add(mediumGreenCircle);
group2.shapes.add(group1);

Circle bigWhiteCircle=new Circle("White",10);
Picture simplePicture=new Picture(
"Very Simple Picture");

simplePicture.shapes.add(bigWhiteCircle);
simplePicture.shapes.add(group2);

1

2

3

Program pokazany na tym slajdzie tworzy w pamięci strukturę danych pokazaną w
postaci diagramu na poprzednim slajdzie. Najpierw tworzone są czerwony prostokąt i
niebieski trójkąt i zapisywane do pierwszej grupy figur (1). Następnie tworzone jest
zielone kółko, które, wraz z grupą pierwszą, jest zapisywane do grupy drugiej (2).
Ostatecznie tworzone jest białe kółko i wraz z drugą grupą figur jest zapisywane do
obiektu reprezentującego cały rysunek (3).

Kompletny kod programu, którego fragmenty pokazano na poprzednich i obecnym
slajdzie załączono do kursu w postaci pliku: Skeleton-lab6.1.java

8

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (8)

Zapisywanie złożonych struktur

Rectangle smallRedRectangle=new Rectangle("Red",1,2);
Triangle bigBlueTriangle=new Triangle("Blue",10);
Group group1=new Group();
group1.shapes.add(smallRedRectangle);
group1.shapes.add(bigBlueTriangle);
Circle mediumGreenCircle=new Circle("Green",5);
Group group2=new Group();
group2.shapes.add(mediumGreenCircle);
group2.shapes.add(group1);
Circle bigWhiteCircle=new Circle("White",10);
Picture simplePicture=new Picture(
"Very Simple Picture");

simplePicture.shapes.add(bigWhiteCircle);
simplePicture.shapes.add(group2);

db.set(simplePicture);2

1

Na slajdzie pokazano kawałek kodu tworzący przykładowy rysunek w pamięci, opisany
na poprzednim slajdzie (1). Został on uzupełniony tylko o jedną linijkę (2), którą jest
aktywacja metody set interfejsu ObjectConstraints, której jako parametr przekazano
referencję na obiekt simplePicture. To jedno wywołanie wystarczy, aby zapisać cały
rysunek do bazy danych. Metoda set zapisuje obiekt przekazany jako parametr i
sprawdza, czy pola zapisywanego obiektu wskazują na jakieś niezapisane obiekty. Jeżeli
tak jest, to wszystkie niezapisane obiekty są również zapisywane w bazie danych.
Procedura jest wywoływana rekursywnie tak długo, jak ciągle napotykane są jakieś
obiekty do zapisania. Jak łatwo zauważyć, przykładowy rysunek ma w pamięci strukturę
drzewa, a zatem wystarczy zapisać jego korzeń (obiekt klasy Picture), żeby cała struktura
została zapisana do bazy danych.

Kompletny kod programu, którego fragmenty pokazano na slajdzie załączono do kursu w
postaci pliku: Skeleton-lab6.2.java

9

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (9)

Odczytywanie złożonych struktur

A A

D
E

B

C

F

1 2

Odczytanie obiektu z bazy danych może wymagać odczytania również wszystkich
obiektów osiągalnych poprzez referencje z odczytywanego obiektu. Odczytanie tychże
obiektów może prowadzić do odczytania kolejnych obiektów. W skrajnym przypadku,
odczytanie jednego obiektu może prowadzić do wczytania do pamięci komputera całej
bazy danych. Przykładowo, obiekt A na przykładzie (1) jest powiązany bezpośrednio, lub
pośrednio z każdym obiektem w bazie danych. W związku z tym, jeżeli obiekt A zostałby
odczytany, to wszystkie inne obiekty w bazie danych musiałyby również zostać
odczytane. Taki efekt jest najczęściej niepożądany i dlatego db4o wprowadza kilka
mechanizmów pozwalających na ograniczenie tego problemu. Podstawowym
rozwiązaniem problemu jest ustalenie liczby kolejnych powiązań referencyjnych wzdłuż
których db4o będzie nawigować w celu odczytywania obiektów powiązanych z obiektem
odczytanym w wyniku realizacji zapytania, przy czym pierwszym powiązaniem
referencyjnym jest powiązanie do odczytywanego obiektu. Jest to tzw. głębokość
aktywacji. Przykładowo, dla głębokości aktywacji równej dwa, przy odczytywaniu obiektu
A (przykład (2)) odczytane zostaną również obiekty osiągalne z obiektu A wzdłuż jednego
powiązania referencyjnego (pierwsze powiązanie do obiektu A i drugie powiązanie do
kolejnych). Na przykładzie (2) są to obiekty B, C i D. Obiekty, które zostały odczytane z
bazy danych i znajdują się pamięci, nazywa się obiektami aktywnymi. Obiekty aktywne
zaznaczono na rysunku kolorem pomarańczowym. Pozostałe obiekty, które nie zostały
odczytane z bazy danych (zaznaczone na czarno) nazywa się obiektami nieaktywnymi.
Niech zmienna refA zawiera referencję na obiekt A odczytany przy poziomie aktywacji 2.
Niech obiekt A zawiera pola, które stanowią referencje na obiekty B, C i D o nazwach
refB, refC i refD odpowiednio. Niech obiekt B posiada pole stanowiące referencję na
obiekt E o nazwie refE, a obiekt C posiada pole stanowiące referencję na obiekt F o
nazwie refF. Przy tych założeniach, następujące wyrażenia ścieżkowe są poprawne:

refA.refB.refE

refA.refC.refF

refA.refD

10

Nawigowanie poza obiekty E i F nie jest możliwe, gdyż obiekty te nie są aktywne. Jeżeli
obiekt jest nieaktywny, to wszystkie jego pola zawierają wartości domyślne (null, 0, false).
W przypadku referencji jest to wartość null. Próba nawigacji poprzez referencję o
wartości null zakończyłaby się wyjątkiem NullPointerException.

Jeżeli zajdzie konieczność odczytania nieaktywnego obiektu, na którego jest znana
referencja (np. refF), Możliwa jest aktywacja takiego obiektu za pomocą metody activate
interfejsu ObjectContainer. Metoda ta przyjmuje dwa parametry: referencję na obiekt i
głębokość aktywacji. W wyniku wywołania tej metody aktywowane są wszystkie obiekty,
począwszy od obiektu przekazanego jako parametr, wzdłuż pewnej liczby kolejnych
powiązań referencyjnych równych głębokości aktywacji.
Przykładowo, aktywacja obiektu wskazywanego przez referencję refF i wszystkich
obiektów osiągalnych poprzez ten obiekt (głębokość aktywacji równa 1) wyglądałaby
następująco:

db.activate(refA.refC.refF,1);

Istnieje również metoda o działaniu odwrotnym do metody activate, o nazwie deactivate,
która powoduje deaktywację i zwolnienie pamięci zajmowanej przez obiekty. Ponieważ
jednak metoda ta nie wchodzi w zakres ćwiczeń, pominiemy ją.

Istnieje również metoda pozwalająca na sprawdzenie, czy obiekt wskazywany przez
referencję jest aktywny. Jest to metoda isActive interfejsu ExtObjectContainer. Metoda
isActive jako parametr przyjmuje jedynie referencję na sprawdzany obiekt. Przykładowo,
sprawdzenie, czy obiekt wskazywany przez referencję refF jest aktywny wyglądałoby
następująco:

if (db.ext().isActive(refA.refC.refF)) {
//aktywny

} else {
//nieaktywny

}

(Uwaga! W przyszłych wersjach db4o, metoda isActive może zostać przeniesiona do
interfejsu ObjectContainer. Wówczas aktywacja tej metody będzie wyglądać następująco:
db.isActive(refA.refC.refF)

).

Głębokość aktywacji może być ustalony zarówno globalnie dla wszystkich klas, jak i dla
każdej z klas z osobna oraz dla każdego pola każdej klasy z osobna. Domyślna globalna
głębokość aktywacji wynosi 5, ale można ją zmienić za pomocą metody activationDepth
zdefiniowanej w interfejsie Configuration. W celu uzyskania referencji na obiekt
implementujący ten interfejs należy wykorzystać statyczną metodę klasy Db4o o nazwie
configure. Przykładowo, ustalenie poziomu aktywacji na 10 wygląda następująco:
Db4o.configure().activationDepth(10);

Operacja ta musi zostać wykonana przed otwarciem połączenia, czyli przed utworzeniem
obiektu implementującego interfejs ObjectContainer (np. metodą openFile klasy Db4o).
Konfiguracja poziomu aktywacji dla poszczególnych klas z osobna jest poza zakresem
ćwiczeń. Osoby zainteresowane powinny zajrzeć do dokumentacji, bądź tutoriala db4o.
Prócz wyżej opisanych metod istnieje również metoda pozwalająca na takie
skonfigurowanie db4o, że odczytanie obiektów konkretnych klas powoduje automatyczne
odczytanie obiektów z nich osiągalnych z pominięciem ograniczenia na głębokość
aktywacji. Nie wchodzi to jednak w zakres ćwiczeń.

11

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (11)

Odczytywanie złożonych struktur – cd.

1

2

3

List<Picture> result=db.get(Picture.class);
Picture p=result.iterator().next();
Circle bigWhiteCircle=(Circle)p.shapes.get(0);
Group group2=(Group)p.shapes.get(1);
Circle mediumGreenCircle=(Circle)group2.shapes.get(0);
Group group1=(Group)group2.shapes.get(1);
Rectangle smallRedRectangle=(Rectangle)group1.shapes.get(0);
Triangle bigBlueTriangle=(Triangle)group1.shapes.get(1);

System.out.println(bigWhiteCircle.color);
System.out.println(mediumGreenCircle.color);
System.out.println(smallRedRectangle.color);
System.out.println(bigBlueTriangle.color);

Db4o.configure().activationDepth(Integer.MAX_VALUE);

White
Green
Red
Blue

4

W celu demonstracji działania metod przedstawionych na poprzednim slajdzie będziemy
zakładać, że przykładowy rysunek przedstawiony na slajdzie „Złożone struktury danych,
dane” został zapisany do bazy danych.
Przykład przedstawiony na slajdzie ustawia bardzo wysoką głębokość aktywacji (1), która
gwarantuje odczytanie wszystkich obiektów osiągalnych z obiektu odczytywanego z bazy
danych. Po otwarciu bazy danych wykonywane jest zapytanie odczytujące przykładowy
rysunek z bazy danych, a referencje na obiekty reprezentujące poszczególne figury są
przypisywane do zmiennych (2). Ostatecznie sprawdzane jest, czy obiekty
reprezentujące figury został odczytane poprawnie poprzez wypisanie na konsoli kolorów
tychże figur (3). Wynikiem działania programu jest (4).

Kompletny kod programu, którego fragmenty pokazano na slajdzie załączono do kursu w
postaci pliku: Skeleton-lab6.3.java

12

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (12)

Odczytywanie złożonych struktur – cd.

1 Db4o.configure().activationDepth(1);

true
false
true
White
Green
Red
Blue

3List<Picture> result=db.get(Picture.class);
Picture p=result.iterator().next();

System.out.println(db.ext().isActive(p));
System.out.println(db.ext().isActive(p.shapes));

db.activate(p.shapes,Integer.MAX_VALUE);

System.out.println(db.ext().isActive(p.shapes));
...

4

2

Przykład przedstawiony na tym i kolejnym slajdzie demonstruje użycie metod isActive i
activate. W przeciwieństwie do poprzedniego przykładu, tutaj głębokość aktywacji
ustawiona jest na 1 (1). Wynika z tego, że tylko obiekt spełniający warunki zapytania jest
odczytywany. Wszelkie osiągalne z niego obiekty pozostaną nieaktywne. Pokazuje to
fragment programu oznaczony przez (2). W wyniku działania tych dwóch linijek kodu na
konsoli pojawia się napis „true” a potem „false” (3), co znaczy, że obiekt reprezentujący
rysunek jest aktywny, ale kolekcja (która również jest obiektem) już nie. Dlatego też, w
kolejnych linijkach kodu (4) kolekcja, oraz wszystkie obiekty z niej osiągalne, jest
aktywowana. Fakt, że kolekcja jest aktywna jest sprawdzany za pomocą metody isActive,
której wynik jest wypisywany na konsoli (3). ...

13

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (13)

Odczytywanie złożonych struktur – cd.

...
Circle bigWhiteCircle=(Circle)p.shapes.get(0);
Group group2=(Group)p.shapes.get(1);
Circle mediumGreenCircle=(Circle)group2.shapes.get(0);
Group group1=(Group)group2.shapes.get(1);
Rectangle smallRedRectangle=(Rectangle)group1.shapes.get(0);
Triangle bigBlueTriangle=(Triangle)group1.shapes.get(1);

System.out.println(bigWhiteCircle.color);
System.out.println(mediumGreenCircle.color);
System.out.println(smallRedRectangle.color);
System.out.println(bigBlueTriangle.color);

true
false
true
White
Green
Red
Blue

3

5

... Ostatni fragment programu (5) jest taki sam jak na poprzednim przykładzie i wypisuje
kolory wszystkich figur na rysunku na konsoli (3).

Kompletny kod programu, którego fragmenty pokazano na tym i poprzednim slajdzie
załączono do kursu w postaci pliku: Skeleton-lab6.4.java

14

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (14)

Modyfikacja struktur w bazie danych

2

3

Db4o.configure().activationDepth(Integer.MAX_VALUE);
Db4o.configure().updateDepth(Integer.MAX_VALUE);

List<Picture> result=db.get(Picture.class);
Picture p=result.iterator().next();

Group group2=(Group)p.shapes.get(1);
Group group1=(Group)group2.shapes.get(1);
Rectangle smallRedRectangle=
(Rectangle)group1.shapes.get(0);

Triangle bigBlueTriangle=
(Triangle)group1.shapes.get(1);

smallRedRectangle.side1++;
bigBlueTriangle.side++;

db.set(p);

1

Jak już wspominano wcześniej, modyfikacja obiektów zapisanych w bazie danych polega na
wczytaniu ich do pamięci z bazy danych, modyfikacji i ponownym zapisie za pomocą metody set.
W przypadku złożonych struktur danych należy również postępować według tego samego
schematu. Problem zaczyna się w sytuacji, kiedy, modyfikacji było bardzo dużo. Wywoływanie
metody set dla każdego zmodyfikowanego obiektu złożonej struktury danych byłoby bardzo
uciążliwe, a implementacja zapisu modyfikacji mogłaby zająć czas, który raczej warto poświęcić na
implementację logiki aplikacji. Metoda set zawiera mechanizm pozwalający na aktualizację całych
struktur zmodyfikowanych w pamięci. Przy okazji omawiania zapisywania złożonych struktur do
bazy danych wspomniano, że metoda set zapisując obiekt sprawdza, czy jego pola nie wskazują
na niezapisane do bazy danych obiekty, i jeżeli tak jest to te obiekty są również zapisywane do
bazy danych. A co jeśli pola zapisywanego obiektu wskazują na obiekty już zapisywane wcześniej
w bazie danych, bądź referencja na taki obiekt zostanie przekazana jako parametr aktualny
metody set? W takiej sytuacji zaczyna działać mechanizm podobny do używanego przy odczycie
obiektów. Polega on na wykorzystaniu tzw. głębokości aktualizacji, to jest liczby powiązań
referencyjnych, wzdłuż których nawiguje db4o w poszukiwaniu obiektów do aktualizacji. Domyślna
głębokość aktualizacji wynosi 1, a zatem aktualizowany jest jedynie obiekt przekazany jako
parametr metodzie set. Głębokość aktualizacji można ustalić zarówno globalnie, jak i dla każdej z
klas z osobna, jak również wyłączyć sprawdzanie głębokości aktualizacji dla obiektów konkretnych
klas, albo pól obiektów konkretnych klas. W zakres ćwiczeń wchodzi jedynie ustalanie globalnej
głębokości aktywacji. Globalną głębokość aktualizacji można zmodyfikować za pomocą metody
updateDepth interfejsu Configuration). Podobnie jak w przypadku głębokości aktywacji, ten
parametr musi również zostać ustalony przed nawiązaniem połączenia z bazą danych.
Przykładowy program pokazany na slajdzie ustala globalną głębokość aktualizacji na bardzo
wysoką wartość, co w praktyce oznacza, że wywołanie metody set spowoduje aktualizację
wszystkich obiektów osiągalnych z obiektu na którego referencję podano jako parametr tej metody
(1). Prócz tego, głębokość aktywacji jest również ustawiana na wysoką wartość w celu ułatwienia
wczytywania rysunku z bazy danych. Następnie, rysunek jest odczytywany z bazy danych, a
referencje na dwie figury z grupy pierwszej są zapisywane do zmiennych (2). Ostatecznie,
wykonywana jest modyfikacja obiektów, które są następnie zapisywane do bazy danych za
pomocą wywołania metody set na obiekcie reprezentującym cały rysunek (3). Ponieważ głębokość
aktywacji jest wysoka, to wszelkie zmiany wprowadzone do obiektów składowych rysunku zostaną
zapisane.

Kompletny kod programu, którego fragmenty pokazano na slajdzie załączono do kursu w postaci
pliku: Skeleton-lab6.5.java

15

Przykładowy program pokazany na slajdzie ustala globalną głębokość aktualizacji na
bardzo wysoką wartość, co w praktyce oznacza, że wywołanie metody set spowoduje
aktualizację wszystkich obiektów osiągalnych z obiektu na którego referencję podano
jako parametr tej metody (1). Prócz tego, głębokość aktywacji jest również ustawiana na
wysoką wartość w celu ułatwienia wczytywania rysunku z bazy danych. Następnie,
rysunek jest odczytywany z bazy danych, a referencje na dwie figury z grupy pierwszej są
zapisywane do zmiennych (2). Ostatecznie, wykonywana jest modyfikacja obiektów,
które są następnie zapisywane do bazy danych za pomocą wywołania metody set na
obiekcie reprezentującym cały rysunek (3). Ponieważ głębokość aktywacji jest wysoka, to
wszelkie zmiany wprowadzone do obiektów składowych rysunku zostaną zapisane.

Kompletny kod programu, którego fragmenty pokazano na slajdzie załączono do kursu w
postaci pliku: Skeleton-lab6.5.java

16

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (16)

Usuwanie struktur z bazy danych

1

2

Db4o.configure().objectClass(Picture.class).
cascadeOnDelete(true);

Db4o.configure().objectClass(Shape.class).
cascadeOnDelete(true);

ObjectContainer db=Db4o.openFile("database.yap");
try {
List<Picture> result=db.get(Picture.class);
Picture p=result.iterator().next();

db.delete(p);
}
finally {
db.close();

}

Dowolne obiekty, niezależnie od tego, czy są samodzielne, czy też są częścią jakiejś
struktury, usuwa się za pomocą metody delete opisywanej wcześniej. Metoda ta usuwa
jedynie obiekt, na który referencja została przekazana jako parametr. Nie ma globalnego
parametru, podobnego do głębokości aktywacji, bądź głębokości aktualizacji,
pozwalającego na usunięcie całej struktury danych za jednym wywołaniem metody.
Możliwe jest jednak włączenie automatycznego usuwania obiektów bezpośrednio
osiągalnych z obiektów konkretnej klasy, bądź obiektów wskazywanych przez określone
pola określonych klas. Na ćwiczeniach pokazany zostanie jedynie sposób
automatycznego usuwania obiektów bezpośrednio osiągalnych z obiektów konkretnej
klasy. Automatyczne usuwanie włącza się za pomocą metody cascadeOnDelete
interfejsu ObjectClass. Obiekty implementujące interfejs ObjectClass pozwalają na
ustawianie parametrów konfiguracyjnych dotyczących pojedynczych klas. Oby uzyskać
taki obiekt należy skorzystać z metody objectClass interfejsu Configuration. Przykładowo,
aby włączyć kaskadowe usuwanie obiektów klasy Shape, należy, przed otwarciem
połączenia z bazą danych, wykonać następującą instrukcję:
Db4o.configuration().objectClass(Shape.class).cascadeOnDelete(true);
Przy usuwaniu obiektów należy zwrócić szczególną uwagę na to, by żadne inne obiekty
w bazie danych nie zawierały referencji na usuwane obiekty, gdyż db4o tego nie
sprawdza (przynajmniej jest tak w wersji 5.2, dla której opracowano ćwiczenia), a zatem
można łatwo doprowadzić do niespójności w bazie danych. Dodatkowym problemem
występującym, przy włączonym automatycznym usuwaniu jest automatyczne usuwanie
obiektów podczas aktualizacji, jeżeli aktualizowany obiekt stracił na nie referencje.
Dokumentacja podaje tutaj następujący przykład:
ObjectContainer con;
Bar bar1 = new Bar();
Bar bar2 = new Bar();
foo.bar = bar1;
con.set(foo); // do bazy danych zapisywane są obiekty foo i bar1
foo.bar = bar2;
con.set(foo); // do bazy danych zapisywany jest obiekt bar2, a
usuwany jest obiekt bar1

17

Obiekt bar1 zostanie usunięty z bazy danych niezależnie od tego, czy inne obiekty
posiadają referencje na niego, czy nie.

Przykładowy program pokazany na slajdzie włącza automatyczne usuwanie obiektów, na
które referencje zapisano w obiektach klas Picture i Shape (1), Następnie odczytuje
obiekt reprezentujący przykładowy rysunek i usuwa go z bazy danych (2). Ponieważ
włączone jest automatyczne usuwanie obiektów, ta jedna instrukcja spowoduje usunięcie
całego rysunku z bazy danych.

Kompletny kod programu, którego fragmenty pokazano na slajdzie załączono do kursu w
postaci pliku: Skeleton-lab6.6.java

18

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (18)

Zadanie (1)

A. Utwórz i zapisz do bazy danych obiekty reprezentujące
przykładowy rysunek, który był omawiany na
poprzednich slajdach.

B. Utwórz w pamięci operacyjnej obiekty poniższego
rysunku i zapisz go do bazy danych.

Yet Another Simple Picture”

GroupA GroupB

1 2 2,2 1

!

(!) Liczby zapisane wewnątrz poszczególnych figur to długości boków, lub promienia w
zależności od figury.

19

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (19)

Zadanie (2)

• Ustaw globalną głębokość aktywacji na 20 i odczytaj
rysunek „Yet Another Simple Picture”. Sprawdź , czy
wszystkie figury na rysunku są aktywne (metoda
isActive).

20

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (20)

Zadanie (3)

• Ustaw globalną głębokość aktywacji na 1 i odczytaj
rysunek „Yet Another Simple Picture”. Sprawdź, czy
kolekcja przechowująca figury rysunku jest aktywna
(metoda isActive). Użyj metody activate do aktywacji
kolekcji i pozostałych obiektów rysunku.

21

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (21)

Zadanie (4)

A. Wczytaj rysunek „Yet Another Simple Picture” do
pamięci. Zmodyfikuj obiekt reprezentujący zielony
trójkąt. Spróbuj zapisać zmiany poprzez wywołanie
metody set na obiekcie klasy Picture bez uprzedniego
ustawiania głębokości aktualizacji.

B. Sprawdź czy zmiany zostały zapisane.
C. Zrób to samo co w punkcie A, ale ustaw głębokość

aktualizacji na 20.
D. Sprawdź jeszcze raz, czy tym razem zmiany zostały

zapisane.
!!

!

(!) Każdy punkt zadania (4) powinien zostać wykonany jako osobne uruchomienie
programu.
(!!) Do podpunktów B i D możesz do tego wykorzystać ten sam program.

22

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (22)

Zadanie (5)

• Usuń rysunek „Yet Another Simple Picture” z bazy
danych, pozostawiając przykładowy rysunek nietknięty.

23

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (23)

Zadanie (6)

• Zaprojektuj schemat tabel pozwalający na
przechowywanie takich samych rysunków jak schemat
klas omawiany na ćwiczeniu (ze wszystkimi
możliwościami grupowania itp.). Wyciągnij wnioski co do
zalet i wad obiektowych baz danych w porównaniu do
relacyjnych baz danych.

Kiedy wykonasz zadania możesz je porównać z rozwiązaniami przedstawionymi na
kolejnych slajdach. Rozwiązanie do ostatniego zadania będzie obejmować jedynie
schemat tabel. Wnioski powinno się wyciągnąć samemu ;).

24

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (24)

Rozwiązanie (1)

A

Rectangle smallRedRectangle=new Rectangle("Red",1,2);
Triangle bigBlueTriangle=new Triangle("Blue",10);
Group group1=new Group();
group1.shapes.add(smallRedRectangle);
group1.shapes.add(bigBlueTriangle);
Circle mediumGreenCircle=new Circle("Green",5);
Group group2=new Group();
group2.shapes.add(mediumGreenCircle);
group2.shapes.add(group1);
Circle bigWhiteCircle=new Circle("White",10);
Picture simplePicture=new Picture(
"Very Simple Picture");

simplePicture.shapes.add(bigWhiteCircle);
simplePicture.shapes.add(group2);

db.set(simplePicture);

Slajd pokazuje rozwiązanie zadania (1A), którego treść przytoczono poniżej.
Rozwiązanie zadania (1) kontynuowane jest na kolejnym slajdzie.

(A) Utwórz i zapisz do bazy danych obiekty reprezentujące przykładowy rysunek, który
był omawiany na poprzednich slajdach.

25

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (25)

Rozwiązanie (1) – cd.

B

Triangle smallGreenTriangle=new Triangle("Green",1);
Circle mediumRedCircle=new Circle("Red",2);
Rectangle mediumYellowRectangle=new Rectangle(
"Yellow",2,2);

Triangle smallBlueTriangle=new Triangle("Blue",1);
Group groupA=new Group();
groupA.shapes.add(smallGreenTriangle);
groupA.shapes.add(mediumRedCircle);
Group groupB=new Group();
groupB.shapes.add(mediumYellowRectangle);
groupB.shapes.add(smallBlueTriangle);
Picture anotherPicture=new Picture(
"Yet Another Simple Picture");

anotherPicture.shapes.add(groupA);
anotherPicture.shapes.add(groupB);

db.set(anotherPicture);

Slajd pokazuje rozwiązanie zadania (1B), którego treść przytoczono poniżej.

(B) Utwórz w pamięci obiekty rysunku „Yet Another Simple Picture” i zapisz go do bazy
danych.

26

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (26)

List<Picture> result=db.get(new Picture(
"Yet Another Simple Picture"));

Picture p=result.iterator().next();
Group groupA=(Group)p.shapes.get(0);
Group groupB=(Group)p.shapes.get(1);
Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);
Circle mediumRedCircle=(Circle)groupA.shapes.get(1);
Rectangle mediumYellowRectangle=
(Rectangle)groupB.shapes.get(0);

Triangle smallBlueTriangle=(Triangle)groupB.shapes.get(1);
System.out.println(db.ext().isActive(smallGreenTriangle));
System.out.println(db.ext().isActive(mediumRedCircle));
System.out.println(db.ext().isActive(
mediumYellowRectangle));

System.out.println(db.ext().isActive(smallBlueTriangle));

Rozwiązanie (2)

Db4o.configure().activationDepth(20);

Slajd pokazuje rozwiązanie zadania (2), którego treść przytoczono poniżej.

Ustaw globalną głębokość aktywacji na 20 i odczytaj rysunek „Yet Another Simple
Picture”. Sprawdź , czy wszystkie figury na rysunku są aktywne (metoda isActive).

27

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (27)

Rozwiązanie (3)

Db4o.configure().activationDepth(1);

List<Picture> result=db.get(new Picture(
"Yet Another Simple Picture"));

Picture p=result.iterator().next();

System.out.println(db.ext().isActive(p.shapes));
db.activate(p.shapes,20);

Slajd pokazuje rozwiązanie zadania (3), którego treść przytoczono poniżej.

Ustaw globalną głębokość aktywacji na 1 i odczytaj rysunek „Yet Another Simple Picture”.
Sprawdź, czy kolekcja przechowująca figury rysunku jest aktywna (metoda isActive). Użyj
metody activate do aktywacji kolekcji i pozostałych obiektów rysunku.

28

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (28)

Rozwiązanie (4)

!

A C

B D

Db4o.configure().activationDepth(20);

List <Picture> result=db.get(
new Picture("Yet Another Simple Picture"));

Picture p=result.iterator().next();
Group groupA=(Group)p.shapes.get(0);
Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);
smallGreenTriangle.side++;
db.set(p);

List <Picture> result=db.get(
new Picture("Yet Another Simple Picture"));

Picture p=result.iterator().next();
Group groupA=(Group)p.shapes.get(0);
Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);
System.out.println(smallGreenTriangle.side);

Db4o.configure().updateDepth(20);C

Slajd pokazuje rozwiązanie zadania (4), którego treść przytoczono poniżej.

(!) ten fragment kodu powinien się znaleźć we wszystkich programach rozwiązujących
kolejne podpunkty zadania.

- (A) Wczytaj rysunek „Yet Another Simple Picture” do pamięci. Zmodyfikuj obiekt
reprezentujący zielony trójkąt. Spróbuj zapisać zmiany poprzez wywołanie metody set na
obiekcie klasy Picture bez uprzedniego ustawiania głębokości aktualizacji.
- (B) Sprawdź czy zmiany zostały zapisane.
- (C) Zrób to samo co w punkcie A, ale ustaw głębokość aktualizacji na 20.
- (D) Sprawdź jeszcze raz, czy tym razem zmiany zostały zapisane.

29

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (29)

Rozwiązanie (5)

Db4o.configure().objectClass(Picture.class).
cascadeOnDelete(true);

Db4o.configure().objectClass(Shape.class).
cascadeOnDelete(true);

ObjectContainer db=Db4o.openFile("database.yap");
try {
Picture template= new Picture(
"Yet Another Simple Picture”);

template.shapes=null;
List<Picture> result=db.get(template);
Picture p=result.iterator().next();
db.delete(p);

}
finally {
db.close();

}

Slajd pokazuje rozwiązanie zadania (5), którego treść przytoczono poniżej.

Usuń rysunek „Yet Another Simple Picture” z bazy danych, pozostawiając przykładowy
rysunek nietknięty.

30

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (30)

Rozwiązanie (6)

CREATE TABLE PICTURES (
PICT_ID NUMERIC(5) PRIMARY KEY,
NAME CHARACTER VARYING (200)

);

CREATE TABLE GROUPS (
GROUP_ID NUMERIC(6) PRIMARY KEY,
PARENT_GROUP_ID NUMERIC (6) REFERENCES GROUPS,
PICT_ID NUMERIC(5) REFERENCES PICTURES,
CHECK (PARENT_GROUP_ID IS NULL AND PICT_ID IS NOT NULL
OR PARENT_GROUP_ID IS NOT NULL AND PICT_ID IS NULL)

);

Slajd pokazuje rozwiązanie zadania (6), którego treść przytoczono poniżej. Rozwiązanie
jest kontynuowane na kolejnych slajdach.

Zaprojektuj schemat tabel pozwalający na przechowywanie takich samych rysunków jak
schemat klas omawiany na ćwiczeniu (ze wszystkimi możliwościami grupowania itp.).
Wyciągnij wnioski co do zalet i wad obiektowych baz danych w porównaniu do
relacyjnych baz danych.

31

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (31)

Rozwiązanie (6) – cd.

CREATE TABLE SHAPES (
SHAPE_ID NUMERIC(7) PRIMARY KEY,
SHAPE CHARACTER VARYING (20) NOT NULL,
COLOR CHARACTER VARYING (20) NOT NULL,
PARAM1 NUMERIC(10) NOT NULL,
PARAM2 NUMERIC(10),
GROUP_ID NUMERIC(4) REFERENCES GROUPS,
...

32

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (32)

Rozwiązanie (6) – cd.

...
PICT_ID NUMERIC(5) REFERENCES PICTURES,
CHECK (SHAPE=‘RECTANGLE’ AND PARAM2 IS NOT NULL OR
SHAPE<>’RECTANGLE’ AND PARAM2 IS NULL),

CHECK (SHAPE IN (‘TRIANGLE’,’RECTANGLE’,’CIRCLE’)),
CHECK (GROUP_ID IS NULL AND PICT_ID IS NOT NULL OR
GROUP_ID IS NOT NULL AND PICT_ID IS NULL)

);

33

Zaawansowane systemy baz danych - ZSBD

ZSBD – ćwiczenie 6 (33)

Podsumowanie

• W trakcie zajęć poznaliście Państwo mechanizmy db4o
pozwalające na pracę ze złożonymi strukturami danych.

• Dowiedzieliście się w jaki sposób można zapisywać,
odszukiwać i odczytywać, modyfikować oraz usuwać
złożone struktury danych.

• Zainteresowani dalszą nauką o OSZBD db4o powinni
zajrzeć do dokumentacji technicznej i tutoriala,
dostarczanych razem z db4o.

