Zaawansowane systemy baz danych - ZSBD

ZSBD - ¢éwiczenie 6

Obiektowe systemy
zarzadzania baza danych.
Praca ze ztozonymi
strukturami danych w
OSZBD db4o.

ZSBD - éwiczenie 6

Dotychczasowa praca z obiektowym systemem zarzgdzania bazg danych db4o nie
réznita sie specjalnie od pracy z relacyjnym systemem zarzadzania bazg danych. W
wyniku wykonania zapytania, otrzymywalismy obiekty jednego typu, ktére spetniaty
warunki zapytania. Obiekty te nie réznity sie réwniez w szczegolny sposéb od krotek.
Celem obecnych zaje¢ jest demonstracja mozliwosci obiektowych systeméw zarzadzania
bazg danych, w sytuacji kiedy aplikacja korzysta z bardziej ztozonych, dynamicznych
struktur danych. W ramach ¢wiczenia poznacie panstwo sposoby zapisu, wyszukiwania,
odczytu, modyfikacji i usuwania ztozonych struktur danych. Dowiecie sie réwniez jakie
problemy sg z tym zwigzane i jak je rozwigzywac.

Wymagania:

Do wykonania ¢wiczenia konieczna jest podstawowa znajomo$¢ srodowiska Eclipse
(pokazanego na poprzednich ¢wiczeniach) i wiedza podstawowa z zakresu
programowania w jezyku Java, oraz wykonanie pigtego ¢wiczenia z ZSBD.

Zaawansowane systemy baz danych - ZSBD

Plan ¢éwiczenia

* Wprowadzenie do laboratorium i nowy schemat klas.

* Przyktadowa ztozona struktura danych.

« Zapisywanie ztozonych struktur danych do baz danych.
» Odczytywanie ztozonych struktur danych z baz danych.
* Modyfikacja ztozonych struktur danych w bazie danych.
* Usuwanie ztozonych struktur danych z bazy danych.

* Zadania.

* Podsumowanie.

ZSBD - éwiczenie 6 (2)

Cwiczenie zostanie rozpoczete od przedstawienia nowego schematu klas, ktéry bedzie
wykorzystywany w przy omawianiu nowej tematyki. Dla nowego schematu zostanie
réwniez przedstawiona przyktadowa struktura danych, ktéra bedzie wykorzystana
demonstracji mechanizméw obstugi ztozonych struktur danych w OSZBD db4o.
Nastepnie zostang opisane mechanizmy db4o pozwalajgce na zapisywanie,
odszukiwanie i odczytywanie, modyfikacje, i usuwanie ztozonych struktur danych. Nie jest
konieczne wykonywanie fragmentéw programow demonstrujgcych poszczegolne
mechanizmy, ktére zostang przedstawione na slajdach. Jest to jednak silnie zalecane,
gdyz umozliwi panstwu lepsze zrozumienie omawianej tematyki. Na koncu zaje¢ zostang
przedstawione zadania do samodzielnego wykonania. Cwiczenie zakornczymy slajdem
podsumowujgcym przedstawiony materiat.

Zaawansowane systemy baz danych - ZSBD

Wprowadzenie do laboratorium

@ Picture) 0*@ Shape &
- 1.7

+name: String
—> <k

K VisibleShape \
—‘> +color: String

@ A |

Triangle Rectangle Circle @ Group
+side: int +side1: int +radius: int
\ +side2: int)
§ /

ZSBD - éwiczenie 6 (3)

Tym co stanowi o sile obiektowych systeméw zarzadzania baza danych jest nie tylko
mozliwos¢ zapisywania pojedynczych obiektow do bazy danych, ale réwniez mozliwosé
tatwego i szybkiego zapisywania catych, ztozonych struktur danych zbudowanych z
obiektéw powigzanych ze sobg powigzaniami referencyjnymi, oraz ich pdzniejszego
odczytywania, modyfikacji i usuwania. Takg funkcjonalno$¢ posiada rowniez OSZBD
db4o.

W celu demonstracji sposobu obstugi ztozonych struktur danych przez OSZBD db4o,
nalezy wprowadzi¢ kilka zmian do schematu klas, ktéry powstat w czasie wykonywania
poprzedniego ¢wiczenia. W poprzednim ¢wiczeniu zostaty zaimplementowane klasy:
VisibleShape, Triangle, Rectangle i Circle (1). Pierwszg modyfikacjg, jakg nalezy
wprowadzi¢, jest implementacja abstrakcyjnej klasy Shape (2), z ktérej powinna
dziedziczy¢ klasa VisibleShape. W kolejnym kroku nalezy zaimplementowac¢ klase
Picture, ktora posiada pole name okreslajgce nazwe rysunku, i kolekcje referencji na
obiekty klasy Shape. Klasa Picture reprezentuje zatem zbiér figur geometrycznych
tworzacych rysunek. Ostatnig klasa, jakg nalezy doda¢, jest klasa Group, ktéra
dziedziczy z klasy Shape. Klasa Group powinna réwniez mie¢ pole, ktore jest kolekcja
referencji na obiekty klasy Shape. Klasa ta reprezentuje zatem grupe figur
geometrycznych tworzacych razem pewng logiczng catosé. Poniewaz klasa Group
dziedziczy z klasy Shape, to mozliwe jest tworzenie rekursywnych struktur danych, w
ktérych grupy figur znajdujg sie w innych grupach.

Zaawansowane systemy baz danych - ZSBD

Nowy schemat klas — kod

(@ |inport java.util.Vector; |

@ abstract class Shape {
b

class VisibleShape extends Shape{ Y~ _
public String color;
public VisibleShape() {}
public VisibleShape(
<:) String color) {
this.color=color;

}

+

ZSBD — éwiczenie 6 (4)

Na tym i kolejnym slajdzie przedstawiono implementacje klas, ktére beda potrzebne do
pokazania sposobu zapisywania i odczytywania ztozonych struktur danych do bazy
danych db4o. Poniewaz bedziemy wykorzystywac¢ kolekcje (klasy Picture i Group),
musimy zaimportowac jedng z klas, ktéra reprezentuje takg kolekcje (1). Pierwszg klasg
jaka nalezy zaimplementowacé, podczas wprowadzania zmian, jest abstrakcyjna klasa
Shape (2). Z klasy tej dziedziczg wszystkie klasy, ktore reprezentujg figury na rysunku.
Nalezy réwniez wprowadzi¢ modyfikacje do klasy VisibleShape polegajaca na uczynieniu
klasy Shape nadklasa klasy VisibleShape (3). ...

Zaawansowane systemy baz danych - ZSBD

Nowy schemat klas — kod — cd.

class Picture { Py
public List<Shape> shapes;
public String name;
(:) public Picture(String name) {
this.name=name;
shapes=new Vector<Shape>();

}

3

class Group extends Shape {
public List<Shape> shapes;

<:) public Group() {

shapes=new Vector<Shape>();
}

}

ZSBD — ¢wiczenie 6 (5)

... Nastepnie, nalezy zaimplementowac¢ klase Picture, ktéra reprezentuje pojedynczy
rysunek w bazie danych i przechowuje kolekcje referencji na obiekty klasy Shape (4).
Ostatecznie, implementowana jest klasa Group, ktéra stuzy do logicznego grupowania
figur na rysunku (5).

Zaawansowane systemy baz danych - ZSBD

Nowy schemat klas — dane

@

simplePicture : Picture

name = Very Simple Picture

@f group? : Group

I

[

)

bigWhiteCircle : Circle

group1 : Group

4

ediumGreenCircle : Circle

radius = 10
color = White

I

[

radius = 5
color = Green

)

smallRedRectangle : Rectangle

7 bigBlueTriangle : Triangle

side1 =1
side2 =2
color = Red

side =10

color = Blue

ZSBD - éwiczenie 6 (6)

Na slajdzie przedstawiono przyktadowa strukture danych, kiérg mozna zbudowac
wykorzystujac klasy zdefiniowane na poprzednich slajdach. Bedzie stanowié ona punkt
wyjsciowy do dalszego omawiania materiatu. Struktura zawiera obiekty sktadajace sie na
jeden rysunek o nazwie "Very Simple Picture” (1). Na rysunek sktada sie obiekt
reprezentujacy biate kotko (2), oraz grupa figur (3) zawierajgca dwa obiekty: zielone kétko
(4) i grupe (5) z dwoma figurami: czerwonym prostokatem (6) i niebieskim trojkatem (7).

Kod tworzacy takg strukture zostat przedstawiony na kolejnym slajdzie.

Zaawansowane systemy baz danych - ZSBD

Nowy schemat klas — dane — cd.

ectangle smallRedRectangle=new Rectangle("'Red",1,2);)
Triangle bigBlueTriangle=new Triangle(''Blue",10);

Group groupl=new Group();
groupl.shapes.add(smal IRedRectangle);
roupl.shapes.add(bigBlueTriangle);

itrcle medirumGreenCircle=new Circle(Green™,5);)
Group group2=new Group();
group?2.shapes.add(mediumGreenCircle);

roup2.shapes.add(groupl);

ircle brigWhrteCircle=new Circle(C White",10);)
Ficture simplePicture=new Picture(

(:i "Very Simple Picture');
simplePicture.shapes.add(bigWhiteCircle);
SimplePicture.shapes.add(group2);

J

ZSBD — ¢wiczenie 6 (7)

Program pokazany na tym slajdzie tworzy w pamieci strukture danych pokazang w
postaci diagramu na poprzednim slajdzie. Najpierw tworzone sg czerwony prostokat i
niebieski trojkat i zapisywane do pierwszej grupy figur (1). Nastepnie tworzone jest
zielone kotko, ktére, wraz z grupg pierwsza, jest zapisywane do grupy drugiej (2).
Ostatecznie tworzone jest biate kétko i wraz z drugg grupa figur jest zapisywane do
obiektu reprezentujgcego caty rysunek (3).

Kompletny kod programu, ktérego fragmenty pokazano na poprzednich i obecnym
slajdzie zataczono do kursu w postaci pliku: Skeleton-lab6.1.java

Zaawansowane systemy baz danych - ZSBD

Zapisywanie ztozonych struktur

Rectangle smal lRedRectangle=new Rectangle(’'Red',1,2); }:i
Triangle bigBlueTriangle=new Triangle(''Blue",10);
Group groupl=new Group();
groupl.shapes.add(smal IRedRectangle);
groupl.shapes.add(bigBlueTriangle);
Circle mediumGreenCircle=new Circle("'Green",5);
(:)Group group2=new Group(Q);
group?.shapes.add(mediumGreenCircle);
group?2.shapes.add(groupl);
Circle bigWhiteCircle=new Circle("White",10);
Picture simplePicture=new Picture(
"Very Simple Picture™);
simplePicture.shapes.add(bigWhiteCircle);
simplePicture.shapes.add(group2);

@[db-set(simplePicture);]

ZSBD - éwiczenie 6 (8)

Na slajdzie pokazano kawatek kodu tworzacy przyktadowy rysunek w pamieci, opisany
na poprzednim slajdzie (1). Zostat on uzupetniony tylko o jednag linijke (2), ktérg jest
aktywacja metody set interfejsu ObjectConstraints, ktérej jako parametr przekazano
referencje na obiekt simplePicture. To jedno wywotanie wystarczy, aby zapisa¢ caty
rysunek do bazy danych. Metoda set zapisuje obiekt przekazany jako parametr i
sprawdza, czy pola zapisywanego obiektu wskazujg na jakies$ niezapisane obiekty. Jezeli
tak jest, to wszystkie niezapisane obiekty sg réwniez zapisywane w bazie danych.
Procedura jest wywotywana rekursywnie tak diugo, jak ciggle napotykane sg jakies
obiekty do zapisania. Jak tatwo zauwazy¢, przyktadowy rysunek ma w pamieci strukture
drzewa, a zatem wystarczy zapisac jego korzen (obiekt klasy Picture), zeby cata struktura
zostata zapisana do bazy danych.

Kompletny kod programu, ktérego fragmenty pokazano na slajdzie zatgczono do kursu w
postaci pliku: Skeleton-lab6.2.java

Zaawansowane systemy baz danych - ZSBD

Odczytywanie ztozonych struktur

e N e
~_ A N~

~_ S~

ZSBD - éwiczenie 6 (9)

Odczytanie obiektu z bazy danych moze wymagac¢ odczytania rowniez wszystkich
obiektéw osiggalnych poprzez referencje z odczytywanego obiektu. Odczytanie tychze
obiektéw moze prowadzi¢ do odczytania kolejnych obiektow. W skrajnym przypadku,
odczytanie jednego obiektu moze prowadzi¢ do wczytania do pamieci komputera catej
bazy danych. Przykladowo, obiekt A na przyktadzie (1) jest powigzany bezposrednio, lub
posrednio z kazdym obiektem w bazie danych. W zwigzku z tym, jezeli obiekt A zostatby
odczytany, to wszystkie inne obiekty w bazie danych musiatyby réwniez zosta¢
odczytane. Taki efekt jest najczesciej niepozadany i dlatego db4o wprowadza kilka
mechanizmoéw pozwalajacych na ograniczenie tego problemu. Podstawowym
rozwigzaniem problemu jest ustalenie liczby kolejnych powigzan referencyjnych wzdtuz
ktérych db4o bedzie nawigowaé w celu odczytywania obiektéw powigzanych z obiektem
odczytanym w wyniku realizacji zapytania, przy czym pierwszym powigzaniem
referencyjnym jest powigzanie do odczytywanego obiektu. Jest to tzw. gtebokosé
aktywacji. Przykladowo, dla gtebokosci aktywacji rownej dwa, przy odczytywaniu obiektu
A (przyktad (2)) odczytane zostang réwniez obiekty osiagalne z obiektu A wzdtuz jednego
powigzania referencyjnego (pierwsze powigzanie do obiektu A i drugie powigzanie do
kolejnych). Na przyktadzie (2) sg to obiekty B, C i D. Obiekty, ktére zostaty odczytane z
bazy danych i znajdujg sie pamieci, nazywa sie obiektami aktywnymi. Obiekty aktywne
zaznaczono na rysunku kolorem pomaranczowym. Pozostate obiekty, ktore nie zostaty
odczytane z bazy danych (zaznaczone na czarno) nazywa sie obiektami nieaktywnymi.
Niech zmienna refA zawiera referencje na obiekt A odczytany przy poziomie aktywacji 2.
Niech obiekt A zawiera pola, ktére stanowig referencje na obiekty B, C i D o nazwach
refB, refC i refD odpowiednio. Niech obiekt B posiada pole stanowigce referencje na
obiekt E o nazwie refE, a obiekt C posiada pole stanowigce referencje na obiekt F o
nazwie refF. Przy tych zatozeniach, nastepujace wyrazenia sciezkowe sg poprawne:

refA.refB.refE
refA.refC.refF
refA.refD

Nawigowanie poza obiekty E i F nie jest mozliwe, gdyz obiekty te nie sg aktywne. Jezeli

obiekt jest nieaktywny, to wszystkie jego pola zawierajg wartosci domysine (null, O, false).

W przypadku referenciji jest to wartos¢ null. Proba nawigacji poprzez referencje o
wartosci null zakonczytaby sie wyjatkiem NullPointerException.

Jezeli zajdzie konieczno$¢ odczytania nieaktywnego obiektu, na ktérego jest znana
referencja (np. refF), Mozliwa jest aktywacja takiego obiektu za pomoca metody activate
interfejsu ObjectContainer. Metoda ta przyjmuje dwa parametry: referencje na obiekt i
gtebokosé aktywacii. W wyniku wywotania tej metody aktywowane sg wszystkie obiekty,
poczawszy od obiektu przekazanego jako parametr, wzdtuz pewnej liczby kolejnych
powigzan referencyjnych rownych gtebokosci aktywac;i.

Przyktadowo, aktywacja obiektu wskazywanego przez referencje refF i wszystkich
obiektéw osiggalnych poprzez ten obiekt (gtebokos¢ aktywacji réwna 1) wygladataby
nastepujaco:

db.activate(refA.refC.refF,1);

Istnieje réwniez metoda o dziataniu odwrotnym do metody activate, o nazwie deactivate,
ktéra powoduje deaktywacje i zwolnienie pamieci zajmowanej przez obiekty. Poniewaz
jednak metoda ta nie wchodzi w zakres ¢wiczen, pominiemy ja.

Istnieje réwniez metoda pozwalajgca na sprawdzenie, czy obiekt wskazywany przez
referencje jest aktywny. Jest to metoda isActive interfejsu ExtObjectContainer. Metoda
isActive jako parametr przyjmuje jedynie referencje na sprawdzany obiekt. Przykladowo,
sprawdzenie, czy obiekt wskazywany przez referencje refF jest aktywny wygladatoby
nastepujaco:

if (db.ext().isActive(refA.refC.refF)) {
//aktywny

} else {
//nieaktywny

}

(Uwaga! W przysztych wersjach db4o, metoda isActive moze zostaé przeniesiona do

interfejsu ObjectContainer. Wéwczas aktywacja tej metody bedzie wyglada¢ nastepujaco:

db.isActive(refA.refC.refF)
).

Glebokos¢ aktywaciji moze byc¢ ustalony zaréwno globalnie dla wszystkich klas, jak i dla
kazdej z klas z osobna oraz dla kazdego pola kazdej klasy z osobna. DomysIna globalna
gtebokos¢ aktywacji wynosi 5, ale mozna jg zmieni¢ za pomocg metody activationDepth
zdefiniowanej w interfejsie Configuration. W celu uzyskania referencji na obiekt
implementujacy ten interfejs nalezy wykorzysta¢ statyczng metode klasy Db4o o nazwie
configure. Przyktadowo, ustalenie poziomu aktywacji na 10 wyglada nastepujaco:

Db4o.configure() .activationDepth(10);

Operacja ta musi zosta¢ wykonana przed otwarciem potaczenia, czyli przed utworzeniem
obiektu implementujgcego interfejs ObjectContainer (np. metoda openFile klasy Db40).
Konfiguracja poziomu aktywacji dla poszczegoélnych klas z osobna jest poza zakresem
¢wiczen. Osoby zainteresowane powinny zajrze¢ do dokumentac;ji, badz tutoriala db4o.

Précz wyzej opisanych metod istnieje réwniez metoda pozwalajaca na takie
skonfigurowanie db4o, ze odczytanie obiektéw konkretnych klas powoduje automatyczne
odczytanie obiektow z nich osiggalnych z pominieciem ograniczenia na gtebokosé
aktywacji. Nie wchodzi to jednak w zakres ¢wiczen.

10

Zaawansowane systemy baz danych - ZSBD

Odczytywanie ztozonych struktur — cd.

@] Db4o.configure() .activationDepth(Integer _MAX_VALUE); \

([List<Picture> result=db.get(Picture.class); 2\\“‘2
Picture p=result.iterator().next();

Circle bigWhiteCircle=(Circle)p.shapes.get(0);

Group group2=(Group)p.-shapes.get(1);

(2)'Circle mediumGreenCircle=(Circle)group2.shapes.get(0);

Group groupl=(Group)group2.shapes.get(l);

Rectangle smal IRedRectangle=(Rectangle)groupl.shapes.get(0);

| Triangle bigBlueTriangle=(Triangle)groupl.shapes.get(1);)

(System.out.printin(bigWhiteCircle.color);

System.out.printIn(mediumGreenCircle.color);
<:) System._out_printIn(smallIRedRectangle.color);
System.out.printin(bigBlueTriangle.color);

White X
@ Green
Red

Blue

ZSBD - éwiczenie 6 (11)

W celu demonstraciji dziatania metod przedstawionych na poprzednim slajdzie bedziemy
zakfadac, ze przyktadowy rysunek przedstawiony na slajdzie ,Ztozone struktury danych,
dane” zostat zapisany do bazy danych.

Przyktad przedstawiony na slajdzie ustawia bardzo wysoka gtebokos¢ aktywaciji (1), ktéra
gwarantuje odczytanie wszystkich obiektéw osiggalnych z obiektu odczytywanego z bazy
danych. Po otwarciu bazy danych wykonywane jest zapytanie odczytujgce przyktadowy
rysunek z bazy danych, a referencje na obiekty reprezentujgce poszczegodine figury sg
przypisywane do zmiennych (2). Ostatecznie sprawdzane jest, czy obiekty
reprezentujace figury zostat odczytane poprawnie poprzez wypisanie na konsoli koloréw
tychze figur (3). Wynikiem dziatania programu jest (4).

Kompletny kod programu, ktérego fragmenty pokazano na slajdzie zatgczono do kursu w
postaci pliku: Skeleton-lab6.3.java

11

Zaawansowane systemy baz danych - ZSBD

Odczytywanie ztozonych struktur — cd.

(:]IDb4o-configure().activationDepth(l);]
List<Picture> result=db.get(Picture.class); EE:::>;<:)true N\
Picture p=result._iterator().next(); false

true

System.out._printIn(db.ext().isActive(p));) White

(2)System.out.println(db.ext().isActive(p.shapes));J Green
Red

(:) b.activate(p-shapes, Integer MAX_VALUE);) Blue
System.out.printIn(db.ext().isActive(p.shapes));)

ZSBD - éwiczenie 6 (12)

Przyktad przedstawiony na tym i kolejnym slajdzie demonstruje uzycie metod isActive i
activate. W przeciwienstwie do poprzedniego przykfadu, tutaj gtebokos¢ aktywacji
ustawiona jest na 1 (1). Wynika z tego, ze tylko obiekt spetniajgcy warunki zapytania jest
odczytywany. Wszelkie osiagalne z niego obiekty pozostang nieaktywne. Pokazuje to
fragment programu oznaczony przez (2). W wyniku dziatania tych dwdch linijek kodu na
konsoli pojawia sie napis ,true” a potem ,false” (3), co znaczy, ze obiekt reprezentujacy
rysunek jest aktywny, ale kolekcja (ktéra réwniez jest obiektem) juz nie. Dlatego tez, w
kolejnych linijkach kodu (4) kolekcja, oraz wszystkie obiekty z niej osiggalne, jest
aktywowana. Fakt, ze kolekcja jest aktywna jest sprawdzany za pomocg metody isActive,
ktérej wynik jest wypisywany na konsoli (3). ...

12

Zaawansowane systemy baz danych - ZSBD

Odczytywanie ztozonych struktur — cd.

Circle bigWhiteCircle=(Circle)p.shapes.get(0); iz::::>‘

Group group2=(Group)p-shapes.get(1);

Circle mediumGreenCircle=(Circle)group2.shapes.get(0);

Group groupl=(Group)group2.shapes.get(l);

GS’Rectangle smal IRedRectangle=(Rectangle)groupl.shapes.get(0);
Triangle bigBlueTriangle=(Triangle)groupl.shapes.get(l);

System.out.printin(bigWhiteCircle.color); (:)true N

System._out._printIn(mediumGreenCircle.color); Ffalse

System.out.printIn(smallRedRectangle.color); true

System.out.printin(bigBlueTriangle.color); White
Green
Red
Blue

ZSBD - éwiczenie 6 (13)

... Ostatni fragment programu (5) jest taki sam jak na poprzednim przyktadzie i wypisuje
kolory wszystkich figur na rysunku na konsoli (3).

Kompletny kod programu, ktérego fragmenty pokazano na tym i poprzednim slajdzie
zatgczono do kursu w postaci pliku: Skeleton-lab6.4.java

13

Zaawansowane systemy baz danych - ZSBD

Modyfikacja struktur w bazie danych

(:)Db4o.configure().activationDepth(lnteger.MAX_VALUE);
Db4o.configure() .updateDepth(Integer _MAX_VALUE);

rlst<P|cture> result=db.get(Picture.class);) 5::
Picture p=result._iterator().next();

Group group2=(Group)p-shapes.get(1);
Group groupl=(Group)group2.shapes.get(l);
Rectangle smallRedRectangle=

(Rectangle)groupl.shapes.get(0);
Triangle bigBlueTriangle=

\ (Triangle)groupl.shapes.get(l);)
smal IRedRectangle.sidel++;)
(:)bigBIueTriangIe-side++;

db.set(p); y,

ZSBD — éwiczenie 6 (14)

Jak juz wspominano wczesniej, modyfikacja obiektdéw zapisanych w bazie danych polega na
wczytaniu ich do pamieci z bazy danych, modyfikacji i ponownym zapisie za pomocg metody set.
W przypadku ztozonych struktur danych nalezy rowniez postepowac wedtug tego samego
schematu. Problem zaczyna sie w sytuacji, kiedy, modyfikacji byto bardzo duzo. Wywotywanie
metody set dla kazdego zmodyfikowanego obiektu ztozonej struktury danych bytoby bardzo
ucigzliwe, a implementacja zapisu modyfikacji mogtaby zaja¢ czas, ktéry raczej warto poswieci¢ na
implementacje logiki aplikacji. Metoda set zawiera mechanizm pozwalajacy na aktualizacje catych
struktur zmodyfikowanych w pamieci. Przy okazji omawiania zapisywania ztozonych struktur do
bazy danych wspomniano, ze metoda set zapisujgc obiekt sprawdza, czy jego pola nie wskazujg
na niezapisane do bazy danych obiekty, i jezeli tak jest to te obiekty sa rowniez zapisywane do
bazy danych. A co jesli pola zapisywanego obiektu wskazujg na obiekty juz zapisywane wczeéniej
w bazie danych, badz referencja na taki obiekt zostanie przekazana jako parametr aktualny
metody set? W takiej sytuacji zaczyna dziata¢ mechanizm podobny do uzywanego przy odczycie
obiektéw. Polega on na wykorzystaniu tzw. gtebokosci aktualizaciji, to jest liczby powigzan
referencyjnych, wzdtuz ktérych nawiguje db4o w poszukiwaniu obiektéw do aktualizacji. Domys$ina
gtebokos¢ aktualizacji wynosi 1, a zatem aktualizowany jest jedynie obiekt przekazany jako
parametr metodzie set. Gtebokos¢ aktualizacji mozna ustali¢ zaréwno globalnie, jak i dla kazdej z
klas z osobna, jak réwniez wytaczyé sprawdzanie gtebokosci aktualizacji dla obiektéw konkretnych
klas, albo pdl obiektow konkretnych klas. W zakres éwiczen wchodzi jedynie ustalanie globalnej
glebokosci aktywaciji. Globalng gteboko$¢ aktualizacji mozna zmodyfikowaé za pomoca metody
updateDepth interfejsu Configuration). Podobnie jak w przypadku gtebokosci aktywacii, ten
parametr musi réwniez zosta¢ ustalony przed nawigzaniem potaczenia z bazg danych.

Przyktadowy program pokazany na slajdzie ustala globalng gteboko$¢ aktualizacji na bardzo
wysokg warto$¢, co w praktyce oznacza, ze wywotanie metody set spowoduje aktualizacje
wszystkich obiektéw osiggalnych z obiektu na ktérego referencje podano jako parametr tej metody
(1). Procz tego, gtebokos¢ aktywacii jest rowniez ustawiana na wysokg warto$¢ w celu utatwienia
wczytywania rysunku z bazy danych. Nastepnie, rysunek jest odczytywany z bazy danych, a
referencje na dwie figury z grupy pierwszej sg zapisywane do zmiennych (2). Ostatecznie,
wykonywana jest modyfikacja obiektéw, ktére sg nastepnie zapisywane do bazy danych za
pomocg wywotania metody set na obiekcie reprezentujgcym caty rysunek (3). Poniewaz gtebokos¢
aktywac;ji jest wysoka, to wszelkie zmiany wprowadzone do obiektéw sktadowych rysunku zostang
zapisane.

Kompletny kod programu, ktérego fragmenty pokazano na slajdzie zatgczono do kursu w postaci
pliku: Skeleton-lab6.5.java

14

Przyktadowy program pokazany na slajdzie ustala globalng gtebokos¢ aktualizacji na
bardzo wysokg wartos¢, co w praktyce oznacza, ze wywotanie metody set spowoduje
aktualizacje wszystkich obiektéw osiggalnych z obiektu na ktérego referencje podano
jako parametr tej metody (1). Procz tego, gtebokos¢ aktywacji jest rowniez ustawiana na
wysokg wartos¢ w celu utatwienia wczytywania rysunku z bazy danych. Nastepnie,
rysunek jest odczytywany z bazy danych, a referencje na dwie figury z grupy pierwszej sq
zapisywane do zmiennych (2). Ostatecznie, wykonywana jest modyfikacja obiektéw,

ktére sg nastepnie zapisywane do bazy danych za pomocg wywofania metody set na
obiekcie reprezentujgcym caty rysunek (3). Poniewaz gteboko$¢ aktywacji jest wysoka, to
wszelkie zmiany wprowadzone do obiektow sktadowych rysunku zostang zapisane.

Kompletny kod programu, ktérego fragmenty pokazano na slajdzie zatgczono do kursu w
postaci pliku: Skeleton-lab6.5.java

15

Zaawansowane systemy baz danych - ZSBD

Usuwanie struktur z bazy danych

rbb4o-configure().objectCIass(Picture.class)- h ‘3::::>§
(:) cascadeOnDelete(true);
Db4o.configure().objectClass(Shape.class).
\ cascadeOnDelete(true);)
ObjectContainer db=Db4o.openFile('database.yap™);
try {
(" List<Picture> result=db.get(Picture.class); h
(2> Picture p=result.iterator().next();
. db.delete(p);)
+
finally {

db.close();

-

ZSBD - éwiczenie 6 (16)

Dowolne obiekty, niezaleznie od tego, czy sg samodzielne, czy tez sg czescig jakiejs
struktury, usuwa sie za pomocg metody delete opisywanej wczesniej. Metoda ta usuwa
jedynie obiekt, na ktéry referencja zostata przekazana jako parametr. Nie ma globalnego
parametru, podobnego do gtebokosci aktywacji, badz gtebokosci aktualizacii,
pozwalajgcego na usuniecie catej struktury danych za jednym wywotaniem metody.
Mozliwe jest jednak wtaczenie automatycznego usuwania obiektéw bezposrednio
osiggalnych z obiektéw konkretnej klasy, badz obiektow wskazywanych przez okreslone
pola okreslonych klas. Na ¢éwiczeniach pokazany zostanie jedynie sposob
automatycznego usuwania obiektéw bezposrednio osiggalnych z obiektdw konkretnej
klasy. Automatyczne usuwanie wigcza sie za pomocg metody cascadeOnDelete
interfejsu ObjectClass. Obiekty implementujgce interfejs ObjectClass pozwalajg na
ustawianie parametréw konfiguracyjnych dotyczacych pojedynczych klas. Oby uzyskac
taki obiekt nalezy skorzysta¢ z metody objectClass interfejsu Configuration. Przyktadowo,
aby wigczy¢ kaskadowe usuwanie obiektow klasy Shape, nalezy, przed otwarciem
potaczenia z bazag danych, wykonaé nastepujaca instrukcje:

Db4o.configuration().objectClass(Shape.class).cascadeOnDelete(true);

Przy usuwaniu obiektéw nalezy zwréci¢ szczegolng uwage na to, by Zadne inne obiekty
w bazie danych nie zawieraty referencji na usuwane obiekty, gdyz db4o tego nie
sprawdza (przynajmniej jest tak w wersiji 5.2, dla ktérej opracowano ¢wiczenia), a zatem
mozna fatwo doprowadzi¢ do niespdjnosci w bazie danych. Dodatkowym problemem
wystepujgcym, przy wigczonym automatycznym usuwaniu jest automatyczne usuwanie
obiektow podczas aktualizacji, jezeli aktualizowany obiekt stracit na nie referencje.

Dokumentacja podaje tutaj nastepujacy przyktad:

ObjectContainer con;

Bar barl = new Bar();

Bar bar2 = new Bar();

foo.bar = barl;

con.set(foo); // do bazy danych zapisywane sg obiekty foo i barl
foo.bar = bar2;

con.set(foo); // do bazy danych zapisywany jest obiekt bar2, a
usuwany jest obiekt barl

Obiekt bar1 zostanie usuniety z bazy danych niezaleznie od tego, czy inne obiekty
posiadajg referencje na niego, czy nie.

Przyktadowy program pokazany na slajdzie wtgcza automatyczne usuwanie obiektéw, na
ktore referencje zapisano w obiektach klas Picture i Shape (1), Nastepnie odczytuje
obiekt reprezentujgcy przyktadowy rysunek i usuwa go z bazy danych (2). Poniewaz
wigczone jest automatyczne usuwanie obiektéw, ta jedna instrukcja spowoduje usuniecie
catego rysunku z bazy danych.

Kompletny kod programu, ktérego fragmenty pokazano na slajdzie zatgczono do kursu w
postaci pliku: Skeleton-lab6.6.java

17

Zaawansowane systemy baz danych - ZSBD

Zadanie (1)

A. Utworz i zapisz do bazy danych obiekty reprezentujace
przyktadowy rysunek, ktéry byt omawiany na
poprzednich slajdach.

B. Utwdrz w pamieci operacyjnej obiekty ponizszego
rysunku i zapisz go do bazy danych.

CDYet Another Simple Picture” ™

AG| =1/

ZSBD - éwiczenie 6 (18)

(1) Liczby zapisane wewnatrz poszczegoélnych figur to dtugosci bokdéw, lub promienia w
zaleznosci od figury.

18

Zaawansowane systemy baz danych - ZSBD

Zadanie (2)

« Ustaw globalng gtebokos¢ aktywaciji na 20 i odczytaj
rysunek ,Yet Another Simple Picture”. Sprawdz , czy
wszystkie figury na rysunku sg aktywne (metoda
isActive).

ZSBD - éwiczenie 6 (19)

19

Zaawansowane systemy baz danych - ZSBD

Zadanie (3)

+ Ustaw globalng gtebokosc¢ aktywaciji na 1 i odczytaj
rysunek ,Yet Another Simple Picture”. Sprawdz, czy
kolekcja przechowujgca figury rysunku jest aktywna
(metoda isActive). Uzyj metody activate do aktywac;i
kolekcji i pozostatych obiektow rysunku.

ZSBD - éwiczenie 6 (20)

20

Zaawansowane systemy baz danych - ZSBD

Zadanie (4)

Oa. Wczytaj rysunek ,Yet Another Simple Picture” do
pamieci. Zmodyfikuj obiekt reprezentujacy zielony
trojkat. Sprébuj zapisa¢ zmiany poprzez wywotanie
metody set na obiekcie klasy Picture bez uprzedniego
ustawiania gtebokosci aktualizacji.

B. Sprawdz czy zmiany zostaty zapisane.

C. Zrob to samo co w punkcie A, ale ustaw gtebokosc¢
aktualizacji na 20.

@p. Sprawdz jeszcze raz, czy tym razem zmiany zostaty
zapisane.

ZSBD - éwiczenie 6 (21)

(1) Kazdy punkt zadania (4) powinien zosta¢ wykonany jako osobne uruchomienie
programu.

(1) Do podpunktéw B i D mozesz do tego wykorzysta¢ ten sam program.

21

Zaawansowane systemy baz danych - ZSBD

Zadanie (5)

* Usun rysunek ,Yet Another Simple Picture” z bazy
danych, pozostawiajac przyktadowy rysunek nietkniety.

ZSBD - éwiczenie 6 (22)

22

Zaawansowane systemy baz danych - ZSBD

Zadanie (6)

« Zaprojektuj schemat tabel pozwalajacy na
przechowywanie takich samych rysunkéw jak schemat
klas omawiany na ¢wiczeniu (ze wszystkimi
mozliwosciami grupowania itp.). Wyciggnij wnioski co do
zalet i wad obiektowych baz danych w poréwnaniu do
relacyjnych baz danych.

ZSBD - éwiczenie 6 (23)

Kiedy wykonasz zadania mozesz je poréwnac z rozwigzaniami przedstawionymi na
kolejnych slajdach. Rozwigzanie do ostatniego zadania bedzie obejmowac jedynie
schemat tabel. Wnioski powinno sie wyciagng¢ samemu ;).

23

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (1)

Rectangle smal lRedRectangle=new Rectangle(’'Red',1,2);
Triangle bigBlueTriangle=new Triangle(''Blue",10);
Group groupl=new Group();
groupl.shapes.add(smal IRedRectangle);
groupl.shapes.add(bigBlueTriangle);
Circle mediumGreenCircle=new Circle("'Green",5);
Group group2=new Group();
CEDgroupz.shapes.add(mediumGreenCircle);
group?2.shapes.add(groupl);
Circle bigWhiteCircle=new Circle("White",10);
Picture simplePicture=new Picture(
"Very Simple Picture™);
simplePicture.shapes.add(bigWhiteCircle);
simplePicture.shapes.add(group2);

db.set(simplePicture);

ZSBD - éwiczenie 6 (24)

Slajd pokazuje rozwigzanie zadania (1A), ktérego tres¢ przytoczono ponizej.
Rozwigzanie zadania (1) kontynuowane jest na kolejnym slajdzie.

(A) Utworz i zapisz do bazy danych obiekty reprezentujace przyktadowy rysunek, ktory
byt omawiany na poprzednich slajdach.

24

Zaawansowane systemy baz danych - ZSBD
Rozwigzanie (1) — cd.

Triangle smallGreenTriangle=new Triangle("'Green',1); Ei:

Circle mediumRedCircle=new Circle('Red",2);
Rectangle mediumYellowRectangle=new Rectangle(
"Yellow",2,2);
Triangle smallBlueTriangle=new Triangle('Blue',1);
Group groupA=new Group();
groupA._shapes.add(smallGreenTriangle);
groupA_shapes.add(mediumRedCircle);
®Group groupB=new Group(Q):
groupB._shapes.add(mediumYellowRectangle);
groupB.shapes.add(smalIBlueTriangle);
Picture anotherPicture=new Picture(
"Yet Another Simple Picture'™);
anotherPicture.shapes.add(groupA);
anotherPicture.shapes.add(groupB);

db.set(anotherPicture);

ZSBD - éwiczenie 6 (25)

Slajd pokazuje rozwigzanie zadania (1B), ktérego tres¢ przytoczono ponizej.

(B) Utworz w pamieci obiekty rysunku ,Yet Another Simple Picture” i zapisz go do bazy
danych.

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (2)

Db4o.configure() .activationDepth(20);

]

Picture p=result._iterator().next();
Group groupA=(Group)p-shapes.get(0);
Group groupB=(Group)p.shapes.get(l);
Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);
Circle mediumRedCircle=(Circle)groupA.shapes.get(1l);
Rectangle mediumYellowRectangle=
(Rectangle)groupB.shapes.get(0);
Triangle smallBlueTriangle=(Triangle)groupB.shapes.get(l);
System.out.printIn(db.ext().isActive(smallGreenTriangle));
System.out.printin(db.ext().isActive(mediumRedCircle));
System.out._printIn(db.ext().isActive(
mediumYel lowRectangle));
System.out.printin(db.ext().isActive(smallBlueTriangle));

List<Picture> result=db.get(new Picture(5::
"Yet Another Simple Picture™));

ZSBD - éwiczenie 6 (26)

Slajd pokazuje rozwigzanie zadania (2), ktérego tres¢ przytoczono ponizej.

Ustaw globalng gtebokos¢ aktywacji na 20 i odczytaj rysunek ,Yet Another Simple
Picture”. Sprawdz , czy wszystkie figury na rysunku sg aktywne (metoda isActive).

26

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (3)

Db4o.configure().activationDepth(l);

List<Picture> result=db.get(new Picture(
"Yet Another Simple Picture™));
Picture p=result._iterator().next();

System.out.printIn(db.ext().isActive(p-shapes));
db.activate(p-.shapes,20);

ZSBD - éwiczenie 6 (27)

Slajd pokazuje rozwigzanie zadania (3), ktérego tres¢ przytoczono ponizej.

Ustaw globalng gtebokosc¢ aktywacji na 1 i odczytaj rysunek ,Yet Another Simple Picture”.
Sprawdz, czy kolekcja przechowujgca figury rysunku jest aktywna (metoda isActive). Uzyj
metody activate do aktywaciji kolekcji i pozostatych obiektéw rysunku.

27

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (4)

(:)’Db4o.configure().activationDepth(ZO);“
©’ Db4o.configure() -updateDepth(20); j

@0

List <Picture> result=db.get(S/
new Picture("'Yet Another Simple Picture'));

Picture p=result._iterator().next();

Group groupA=(Group)p.shapes.get(0);

Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);

smallGreenTriangle.side++;

db.set(p);

List <Picture> result=db.get(ST
new Picture(''Yet Another Simple Picture'™));

Picture p=result._iterator().next();

Group groupA=(Group)p-shapes.get(0);

Triangle smallGreenTriangle=(Triangle)groupA.shapes.get(0);

System.out.printin(smallGreenTriangle.side);

ZSBD - éwiczenie 6 (28)

Slajd pokazuje rozwigzanie zadania (4), ktérego tres¢ przytoczono ponizej.

(1) ten fragment kodu powinien sie znalez¢ we wszystkich programach rozwigzujacych
kolejne podpunkty zadania.

- (A) Wczytaj rysunek ,Yet Another Simple Picture” do pamieci. Zmodyfikuj obiekt
reprezentujacy zielony tréjkat. Sprobuj zapisa¢ zmiany poprzez wywotanie metody set na
obiekcie klasy Picture bez uprzedniego ustawiania gtebokos$ci aktualizacii.

- (B) Sprawdz czy zmiany zostaty zapisane.

- (C) Zréb to samo co w punkcie A, ale ustaw gtebokos¢ aktualizacji na 20.

- (D) Sprawdz jeszcze raz, czy tym razem zmiany zostaty zapisane.

28

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (5)

Db4o.configure().objectClass(Picture.class). B:i

cascadeOnDelete(true);
Db4o.configure() .objectClass(Shape.class).
cascadeOnDelete(true);
ObjectContainer db=Db4o.openFile(*'database.yap');
try {
Picture template= new Picture(
"Yet Another Simple Picture™);
template.shapes=null;
List<Picture> result=db.get(template);
Picture p=result.iterator().next();
db.delete(p);
}
finally {
db.close();
}

ZSBD - éwiczenie 6 (29)

Slajd pokazuje rozwigzanie zadania (5), ktérego tres¢ przytoczono ponizej.

Usun rysunek ,Yet Another Simple Picture” z bazy danych, pozostawiajac przyktadowy
rysunek nietkniety.

29

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (6)

CREATE TABLE PICTURES (
PICT_ID NUMERIC(5) PRIMARY KEY,
NAME CHARACTER VARYING (200)

);

CREATE TABLE GROUPS (

GROUP_ID NUMERIC(6) PRIMARY KEY,
PARENT_GROUP_ID NUMERIC (6) REFERENCES GROUPS,
PICT_ID NUMERIC(5) REFERENCES PICTURES,

CHECK (PARENT_GROUP_ID IS NULL AND PICT_ID IS NOT NULL
OR PARENT_GROUP_ID IS NOT NULL AND PICT_ID IS NULL)

);

ZSBD - éwiczenie 6 (30)

Slajd pokazuje rozwigzanie zadania (6), ktérego tres¢ przytoczono ponizej. Rozwigzanie
jest kontynuowane na kolejnych slajdach.

Zaprojektuj schemat tabel pozwalajacy na przechowywanie takich samych rysunkow jak
schemat klas omawiany na éwiczeniu (ze wszystkimi mozliwosciami grupowania itp.).
Wyciagnij wnioski co do zalet i wad obiektowych baz danych w poréwnaniu do
relacyjnych baz danych.

30

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (6) — cd.

CREATE TABLE SHAPES (

SHAPE_ID NUMERIC(7) PRIMARY KEY,

SHAPE CHARACTER VARYING (20) NOT NULL,
COLOR CHARACTER VARYING (20) NOT NULL,
PARAM1 NUMERIC(10) NOT NULL,

PARAM2 NUMERIC(10),

GROUP_ID NUMERIC(4) REFERENCES GROUPS,

ZSBD - éwiczenie 6 (31)

31

Zaawansowane systemy baz danych - ZSBD

Rozwigzanie (6) — cd.

PICT_ID NUMERIC(5) REFERENCES PICTURES,

CHECK (SHAPE="RECTANGLE’ AND PARAM2 IS NOT NULL OR
SHAPE<>'RECTANGLE’ AND PARAM2 IS NULL),

CHECK (SHAPE IN (‘TRIANGLE’,RECTANGLE’,CIRCLE’)),

CHECK (GROUP_ID IS NULL AND PICT_ID IS NOT NULL OR
GROUP_ID IS NOT NULL AND PICT_ID IS NULL)

);

ZSBD - éwiczenie 6 (32)

32

Zaawansowane systemy baz danych - ZSBD

Podsumowanie

» W trakcie zaje¢ poznaliscie Panstwo mechanizmy db4o
pozwalajgce na prace ze ztozonymi strukturami danych.

+ Dowiedzieliscie sie w jaki spos6b mozna zapisywac,
odszukiwacé i odczytywac, modyfikowaé oraz usuwaé
ztozone struktury danych.

» Zainteresowani dalszg naukg o OSZBD db4o powinni
zajrze¢ do dokumentaciji technicznej i tutoriala,
dostarczanych razem z db4o.

ZSBD - éwiczenie 6 (33)

33

