
1

Podstawy kompilatorów

Translacja sterowana składnią w metodzie
zstępującej

Wojciech Complak
Wojciech.Complak@cs.put.poznan.pl

2

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (2)

Plan wykładu

• translacja sterowana składnią
• definicje sterowane składnią i schematy translacji
• atrybuty syntetyzowane i dziedziczone
• definicje S-atrybutowe i L-atrybutowe
• implementacja translacji sterowanej składnią w

metodzie zstępującej w języku C i za pomocą
generatora LLgen

W ramach wykładu zostaną omówione następujące zagadnienia:
•czym jest translacja sterowana składnią ?
•definicje sterowane składnią i schematy translacji
•atrybuty syntetyzowane i dziedziczone
•definicje S-atrybutowe i L-atrybutowe
•implementacja translacji sterowanej składnią w metodzie zstępującej w języku C
i za pomocą generatora LLgen

3

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (3)

Translacja sterowana składnią

• translacja sterowana składnią to translacja
języków oparta o gramatyki bezkontekstowe, w
której:
– z konstrukcjami języka programowania

wiązana jest pewna informacja poprzez
dołączenie atrybutów do symboli gramatyki
reprezentujących te konstrukcje

– wartości atrybutów obliczane są przez tzw.
reguły semantyczne związane z produkcjami
gramatyki

Translacja sterowana składnią to translacja języków oparta o gramatyki
bezkontekstowe, w której:
•z konstrukcjami języka programowania wiązana jest pewna informacja poprzez
dołączenie atrybutów do symboli gramatyki reprezentujących te konstrukcje
•wartości atrybutów obliczane są przez tzw. reguły semantyczne związane z
produkcjami gramatyki

4

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (4)

Definicje sterowane składnią i schematy translacji

• istnieją dwie notacje łączące reguły semantyczne
z produkcjami
– definicje sterowane składnią – ukrywają wiele

szczegółów implementacyjnych, nie wymagają
jawnego określania kolejność obliczania reguł
semantycznych

– schematy translacji – wskazują kolejność
ewaluacji reguł semantycznych dzięki czemu
widocznych jest więcej szczegółów
implementacyjnych

Istnieją dwie notacje służące do wiązania reguł semantycznych z produkcjami:
•definicje sterowane składnią – notacja wysokopoziomowa ukrywająca wiele
szczegółów implementacyjnych i nie wymagająca jawnego określania kolejności
obliczania reguł semantycznych
•schematy translacji – notacja niskopoziomowa wskazująca kolejność ewaluacji
reguł semantycznych dzięki czemu widocznych jest więcej szczegółów
implementacyjnych

5

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (5)

Definicje sterowane składnią

• definicje sterowane składnią są uogólnieniem
gramatyki bezkontekstowej, w której z każdym
symbolem związany jest pewien zbiór atrybutów

• atrybuty dzielimy na syntetyzowane i
dziedziczone

• atrybuty mogą reprezentować dowolne wielkości
(napisy, liczby, typy, adresy …)

• wartości atrybutów w węźle drzewa wywodu są
określane przez reguły semantyczne związane z
produkcją przypisaną do tego węzła

Definicje sterowane składnią są uogólnieniem gramatyki bezkontekstowej, w
której z każdym symbolem gramatyki związany jest pewien zbiór atrybutów.
Atrybuty – w zależności od sposobu ich ewaluacji – dzielimy na syntetyzowane i
dziedziczone.
Atrybutów możemy użyć do przechowywania informacji dowolnego rodzaju, np.
napisów, liczb, typów, adresów …
Wartości atrybutów w węźle drzewa wywodu są określane przez reguły
semantyczne związane z produkcją przypisaną do tego węzła drzewa.

6

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (6)

Atrybuty syntetyzowane i dziedziczone

• w definicji sterowanej składnią z każdą produkcją
gramatyki B → X1 X2 … Xn jest związany zbiór
reguł semantycznych o postaci:
b := f(p1, p2, …, pn), gdzie:
– b jest atrybutem syntetyzowanym symbolu B,

a p1, p2, …, pn są atrybutami symboli X1, X2,
…, Xn

– b jest atrybutem dziedziczonym symbolu Xi, a
p1, p2, …, pn są atrybutami symboli B, X1, X2,
…, Xn

W definicji sterowanej składnią z każdą produkcją gramatyki możemy związać
zbiór reguł semantycznych (akcji), w których obliczane są wartości atrybutów.
Wartości atrybutów syntetyzowanych obliczane są na podstawie wartości
atrybutów dzieci tego węzła w drzewie wywodu. Na poziomie reguły
semantycznej oznacza to, że atrybut symbolu stojącego po lewej stronie
produkcji jest funkcją atrybutów symboli stojących po prawej stronie produkcji.
Wartości atrybutów dziedziczonych obliczane są na podstawie wartości
atrybutów sąsiadów i rodzica tego węzła w drzewie wywodu. Na poziomie reguły
semantycznej oznacza to, że atrybut symbolu stojącego po prawej stronie
produkcji jest funkcją atrybutów symbolu po lewej stronie produkcji i atrybutów
symboli po prawej stronie produkcji.
Przyjmuje się, że terminale nie mogą mieć atrybutów dziedziczonych (w definicji
sterowanej składnią nie ma reguł semantycznych dla terminali). Zwykle zakłada
się również, że aksjomat gramatyki nie ma atrybutów dziedziczonych.

7

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (7)

Definicje S-atrybutowe i L-atrybutowe

• wśród definicji sterowanych składnią wyróżniamy
dwie podklasy:
– S-atrybutowe – tylko atrybuty syntetyzowane
– L-atrybutowe – każdy atrybut może być:

• atrybutem syntetyzowanym albo
• atrybutem dziedziczonym symbolu Xi w

produkcji B → X1 X2 … Xi … Xn, który
zależy od atrybutów symboli X1 X2 … Xi-1
oraz atrybutu dziedziczonego symbolu B

Wśród definicji sterowanych składnią wyróżniamy dwie podklasy:
•definicje S-atrybutowe, w których używane są jedynie atrybuty syntetyzowane
•definicje L-atrybutowe, w których każdy atrybut może być:
atrybutem syntetyzowanym albo
atrybutem dziedziczonym symbolu stojącego po prawej stronie produkcji, który
zależy od atrybutów symboli stojących po prawej stronie produkcji na lewo od
niego i od atrybutu dziedziczonego symbolu stojącego po lewej stronie produkcji.
Każda definicja S-atrybutowa jest również L-atrybutowa
Definicja L-atrybutowa jest szczególnie istotna z praktycznego punktu widzenia –
translacja może być wykonywana w trakcie analizy składniowej wejścia i nie ma
potrzeby jawnego budowania drzewa wywodu (dzięki czemu zyskujemy na
wydajności analizatora).

8

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (8)

Translacja sterowana składnią w metodzie zstępującej

• w ramach wykładu zademonstrowane zostanie
konstruowanie analizatorów działających metodą
rekurencyjnych zejść bez nawrotów najpierw w
języku C, a następnie przy użyciu generatora
LLgen

• gramatyki muszą być LL(1), jeśli nie są – należy:
– wyeliminować lewostronną rekurencję
– przeprowadzić lewostronną faktoryzację
– odpowiednio dostosować akcje semantyczne

W ramach wykładu zostanie zademonstrowane konstruowanie analizatorów
działających metodą rekurencyjnych zejść bez nawrotów najpierw w języku C, a
następnie przy użyciu generatora LLgen.
Tego typu analizatory są efektywne, ale nakładają pewne istotne ograniczenia na
gramatykę. Przed przystąpieniem do implementacji analizatora należy usunąć
ewentualną lewostronną rekurencję i niejednoznaczności oraz – jeśli jest to
konieczne – przeprowadzić lewostronną faktoryzację (zagadnienia te zostały
szerzej omówione w wykładzie poświęconym analizie składniowej metodą
zstępującą).
Podczas modyfikacji definicji sterowanych składnią trzeba również odpowiednio
zmodyfikować akcje semantyczne.
W ramach wykładu poświęconego podstawom generatora LLgen omówiono jego
rozszerzenia, które pozwalają obejść większość wymienionych ograniczeń.

9

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (9)

Interfejs do analizatora leksykalnego

• do analizy leksykalnej zostaną wykorzystane
analizatory wygenerowane przez LEXa

• dla uproszczenia komunikacji ze skanerem
warto odpowiednio rozszerzyć jego interfejs:

int LLcsymb;

int LLlookAhead(void) { return LLcsymb; }

void LLread(void) { LLcsymb = yylex(); }

void InitLexScanner(void) { LLread(); }

W implementacji translatorów w języku C zostaną wykorzystane skanery
wygenerowane za pomocą LEXa.
Dla uproszczenia komunikacji z analizatorem leksykalnym warto odpowiednio
rozszerzyć jego interfejs o:
•pomocniczą zmienną LLcsymb, którą będzie przechowywać bieżący token
•funkcję LLlookAhead pozwalającą podejrzeć jeden token z wejścia
•funkcję LLread przesuwającą głowicę skanera na następny token
•funkcję InitLexScanner inicjalizującą skaner poprzez wczytanie pierwszego
symbolu z wejścia.

10

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (10)

Atrybuty – zasady implementacji

• atrybuty symboli będą implementowane jako
parametry funkcji:
– atrybuty syntetyzowane jako parametry

wyjściowe (na poziomie języka C – wskaźniki)
– atrybuty dziedziczone jako parametry

wejściowe (na poziomie języka C – zmienne
przekazywane przez wartość)

• każdy symbol może mieć wiele atrybutów
(ewentualne ograniczenia wynikają tylko z
używanego kompilatora języka C)

Atrybuty symboli gramatyki będą implementowane jako parametry funkcji.
Atrybuty syntetyzowane jako parametry wyjściowe (na poziomie języka C –
wskaźniki), atrybuty dziedziczone jako parametry wejściowe (na poziomie języka
C – zmienne przekazywane przez wartość).
Z przyjętej metody implementacji wynika, że:
•każdy symbol może mieć wiele atrybutów (kompilator zgodny ze standardem
C99 musi pozwalać na użycie co najmniej 127 parametrów funkcji)
•typy atrybutów syntetyzowanych i dziedziczonych podlegają tym samym
zasadom co parametry funkcji w języku C.
Przedstawioną metodę można zastosować również w każdym innym języku
programowania, który pozwala na korzystanie z podprogramów rekurencyjnych i
przetwarzanie tekstu (np. Pascal i Ada, ale nie Basic i Fortan). Odpowiednie
dostosowanie notacji i nazw typów nie powinno stanowić istotnego problemu.
Korzystanie z atrybutów syntetyzowanych i dziedziczonych zostanie
zademonstrowane na przykładach.

11

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (11)

Atrybuty syntetyzowane – długość ciągu binarnego

• w implementacji analizatora obliczającego
długość ciągu cyfr binarnych wykorzystany
zostanie atrybut syntetyzowany

• do implementacji analizatora użyjemy
następującej definicji sterowanej składnią:
S → L { writeln(L.length) }
L → 0 L1 { L.length := L1.length + 1 }
L → 1 L1 { L.length := L1.length + 1 }
L → ε { L.length := 0 }

• i analizatora leksykalnego o specyfikacji:
%%
[01] { return yytext[0]; }

Wykorzystanie atrybutu syntetyzowanego zademonstrowane zostanie na
przykładzie analizatora obliczającego i drukującego długość ciągu cyfr binarnych.
Jednostkowa produkcja S –> L posłuży do wypisania rezultatu.
Długość ciągu zostanie obliczona w atrybucie syntetyzowanym length
nieterminala L, w którym po każdym natrafieniu na cyfrę binarną (0 lub 1)
będziemy rekurencyjnie powtarzać rozpoznawanie aż do osiągnięcia przypadku
bazowego – ciągu pustego. Ciąg pusty ma długość 0, a przy każdym powrocie z
rekurencji wartość atrybutu length będzie zwiększana o 1.
Zadaniem analizatora leksykalnego będzie rozpoznawanie i zwracanie cyfr
binarnych.

12

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (12)

Atrybuty syntetyzowane – nieterminal L

• implementacja nieterminala L:

void L(int *length)
{

switch(LLlookAhead())
{

case '0' :
case '1' : LLread();

L(length);
(*length)++;
return;

case 0 : *length = 0;
return;

}
}

Funkcja implementująca nieterminal L ma jeden parametr – wskaźnik na zmienną
length (atrybut syntetyzowany).
Po każdym wywołaniu funkcja sprawdza symbol widoczny na wejściu. Po
natrafieniu na cyfrę binarną głowica jest przesuwana na kolejny symbol
(wywołaniem LLread()) i funkcja rekurencyjnie wywołuje samą siebie. Po
powrocie z wywołania zostanie zwiększona wartość atrybutu length.
Po natrafieniu na koniec pliku (stała 0) atrybut length zostanie zainicjalizowany
wartością 0 (długość ciągu pustego) i rozpocznie się powrót z rekurencji.
Niestety, w etykiecie instrukcji switch nie można skorzystać ze stałej EOF,
ponieważ w języku C ma ona wartość -1, a LEX sygnalizuje koniec pliku
zwracając 0.
Wykorzystanie cech języka C umożliwiło łatwe wykonanie optymalizacji
implementacji funkcji L. Ponieważ akcje semantyczne wykonywane po
rozpoznaniu 0 i 1 były identyczne, więc można było wykorzystać ten sam kod w
obu przypadkach (w Pascalu czy Adzie nie byłoby już to tak proste).

13

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (13)

Atrybuty syntetyzowane – nieterminal S

• implementacja nieterminala S i funkcji main:

void S(void)
{

int len;
L(&len);
printf("\n%d\n",len);

}

int main()
{

InitLexScanner();
S();
return 0;

}

W funkcji implementującej nieterminal S zadeklarowano lokalną zmienną len,
która posłuży do akumulowania długości łańcucha. Wskaźnik do tej zmiennej jest
przekazywany jako argument w wywołaniu funkcji L. Po powrocie z funkcji L
drukujemy obliczoną przez nią długość łańcucha.
W funkcji main należy zainicjalizować analizator leksykalny, a następnie wywołać
funkcję S, która jest implementacją aksjomatu gramatyki.

14

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (14)

Atrybuty dziedziczone – parzystość ciągu

• w implementacji analizatora sprawdzającego
parzystość liczby binarnej wykorzystany
zostanie atrybut syntetyzowany

• schemat translacji ma postać:
L → 0 { R.parity := 0 } R
L → 1 { R.parity := 1 } R
R → L
R → ε { if R.parity = 0

then writeln("parzysta")
else writeln("nieparzysta") }

• analizator leksykalny jest taki sam, jak w
poprzednim przykładzie

Wykorzystanie atrybutu dziedziczonego zademonstrowane zostanie na
przykładzie analizatora sprawdzającego parzystość liczby binarnej.
Na wejściu znajduje się niepusty ciąg cyfr binarnych tworzących liczbę zapisaną
począwszy od najbardziej znaczącej cyfry.
Jeżeli liczba jest parzysta (najmłodszą cyfrą jest 0) ma zostać wydrukowany
komunikat „parzysta”, w przeciwnym wypadku (najmłodszą cyfrą jest 1) –
komunikat „nieparzysta”.
Wywodzenie wejścia rozpoczyna się od nieterminala L. Informacja o wczytanej
cyfrze jest przekazywana w atrybucie dziedziczonym parity nieterminalowi R.
Następnie rozwijany jest nieterminal R. Jeżeli na wejściu zostanie napotkany
koniec pliku, na podstawie wartości atrybutu dziedziczonego drukowany jest
odpowiedni komunikat. W przeciwnym wypadku – kontynuujemy wywodzenie
nieterminala L.
Analizator leksykalny ma taką samą postać, jak w poprzednim przykładzie.

15

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (15)

Atrybuty dziedziczone – nieterminal R

• implementacja nieterminala R:

void R(int parity)
{

switch(LLlookAhead())
{

case 0 : if(parity == 0)printf("parzysta");
else printf("nieparzysta");
return;

default : L();
return;

}
}

Funkcja implementująca nieterminal R ma jeden parametr – atrybut dziedziczony
parity przekazywany przez wartość.
Jeżeli na wejściu widoczny jest koniec pliku, to na podstawie wartości tego
atrybutu można określić jaka była ostatnio przeczytana cyfra i wydrukować
odpowiedni komunikat. Jeżeli na wejściu widoczny jest jakikolwiek znak
wywołujemy funkcję L.

16

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (16)

Atrybuty dziedziczone – nieterminal L

• implementacja nieterminala L:

void L(void)
{

switch(LLlookAhead())
{

case '0' : LLread();
R(0);
return;

case '1' : LLread();
R(1);
return;

}
}

W implementacji nieterminala L należy wczytać cyfrę binarną z wejścia i
przekazać odpowiednią informację w argumencie wywołania funkcji R.
Funkcja L jest implementacją aksjomatu gramatyki, więc to ona musi zostać
wywołana w funkcji main.

17

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (17)

Atrybuty tokenów – suma liczb

• przekazywanie atrybutów tokenów zostanie
pokazane na przykładzie prostego sumatora

• na wejściu znajduje się ciąg nieujemnych liczb
całkowitych ujęty w nawiasy okrągłe,
ciąg zawiera co najmniej jedną liczbę, jeśli jest
ich więcej – są rozdzielone przecinkami

• należy napisać analizator, który obliczy i wypisze
sumę liczb

• dla przykładowego wejścia (5, 6, 7) powinniśmy
otrzymać odpowiedź: 18

Posługiwanie się atrybutami jednostek leksykalnych zademonstrujmy na
przykładzie prostego sumatora.
Na wejściu znajduje się ciąg nieujemnych liczb całkowitych ujęty w nawiasy
okrągłe. Ciąg zawiera co najmniej jedną liczbę, jeśli jest ich więcej – są
rozdzielone przecinkami. Należy napisać analizator, który obliczy i wypisze sumę
liczb.

18

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (18)

Atrybuty tokenów – schemat translacji

• wartość liczby jest przekazywana z analizatora
leksykalnego za pomocą atrybutu val

• nieterminal R oblicza sumę liczb w atrybucie
dziedziczonym sum

• schemat translacji ma postać:

S → (num { R.sum := num.val } R

R →) { writeln(R.sum) }
R → , num { R1.sum := R.sum + num.val } R1

W translacji wykorzystany zostanie atrybut (oczywiście syntetyzowany) val
symbolu terminalnego num, który posłuży do przekazania wartości liczby do
analizatora składniowego.
Całe wejście (S) składać się będzie z lewego nawiasu, liczby i reszty (R). Po
odczytaniu liczby jej wartość (atrybut val) kopiujemy do atrybutu dziedziczonego
nieterminala R.
Reszta (R) może być:
•prawym nawiasem kończącym wejście – wtedy drukujemy rezultat (atrybut
dziedziczony sum nieterminala R)
•przecinkiem, kolejną liczbą i resztą (R1) – do atrybutu sum dalszego ciągu
reszty przypisujemy sumę dotychczas przetworzonych elementów (atrybut sum
nieterminala R) i wartość bieżącej liczby (num.val).

19

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (19)

Atrybuty tokenów – skaner

• analizator leksykalny:

%{ extern int LLlval;
#define num 257

%}
%%
\({ return '('; }
\) { return ')'; }
\, { return ','; }
" " { ; }
[0-9]+ { LLlval = atoi(yytext);

return num;
}

Analizator leksykalny zaimplementujemy w LEXie. Musi on rozpoznawać i
zwracać lewe i prawe nawiasy oraz przecinek. Ewentualne spacje na wejściu
pomijamy.
Do przekazywania wartości atrybutu symbolu leksykalnego musimy wykorzystać
globalną zmienną – w tym przypadku wystarczy użyć zmiennej typu całkowitego.
Jeżeli będziemy przekazywać atrybuty różnych typów można skorzystać z unii
języka C.
Zmienną możemy zdefiniować w parserze albo w skanerze. W przykładzie
zmienna LLlval została zdefiniowana w parserze, a więc w skanerze musimy
zadeklarować ją jako zewnętrzną. Po natrafieniu na liczbę, jej wartość wpisujemy
do zmiennej LLlval i zwracamy informację o rozpoznaniu tokenu num.
Tokenowi num przypisaliśmy nazwę, więc musimy pamiętać o przypisaniu jej
odpowiedniej (większej niż 256) stałej. Gdyby w gramatyce było więcej
nazwanych tokenów najlepiej utworzyć zewnętrzny plik nagłówkowy i włączać go
i do analizatora leksykalnego i składniowego.

20

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (20)

Atrybuty tokenów – nieterminal S

• w parserze definiujemy globalną zmienną:
int LLlval;

oraz token num:
#define num 257

• implementacja nieterminala S ma postać:

void S(void)
{
LLread(); /* (*/
LLread(); /* num */
R(LLlval);

}

Zmienną LLlval służącą do przekazywania atrybutu syntetyzowanego symbolu
num definiujemy w analizatorze składniowym.
Musimy pamiętać również o przypisaniu stałej dla tokenu num – oczywiście o tej
samej wartości co w analizatorze leksykalnym.
Funkcja implementująca nieterminal S czyta z wejścia lewy nawias, liczbę i
wywołuje funkcję R przekazując jako argument wartość liczby (atrybut
dziedziczony sum).

21

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (21)

Atrybuty tokenów – nieterminal R

• implementacja nieterminala R:

void R(int sum)
{ switch(LLlookAhead())
{ case ')' : LLread();

printf("\n%d\n",sum);
return;

case ',' : LLread(); /* , */
LLread(); /* num */
R(sum + LLlval);
return;

}
}

Funkcja implementująca nieterminal R podgląda jeden symbol z wejścia. Jeżeli
jest to nawias, wczytuje go i drukuje wartość sumy.
Jeżeli jest to przecinek, wczytuje go, wczytuje liczbę i wywołuje procedurę R
przekazując jako argument sumę wcześniej wczytanych (zmienna sum) i wartość
bieżącej liczby (LLlval).

22

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (22)

Obsługa błędów - zadanie

• problem obsługi błędów zostanie omówiony na
przykładzie akceptora dla kontekstowego języka
anbncn dla n > 0

• cała obsługa błędów będzie wykonywana po
stronie analizatora składniowego

• analizator leksykalny rozpoznaje i zwraca
pojedyncze znaki:

%%
.|\n { return yytext[0]; }

We wszystkich przedstawionych wcześniej analizatorach zakładaliśmy, że
wejście jest poprawne. Zobaczmy teraz na przykładzie akceptora dla
kontekstowego języka a^n b^n c^n jak można zorganizować obsługę błędów w
analizatorze składniowym.
Analizator leksykalny rozpoznaje dowolne znaki na wejściu i przekazuje je do
parsera, na którego spada całe zadanie obsługi błędów. Takie rozwiązanie jest o
wiele efektywniejsze, jeśli chodzi o wykrywanie możliwych przyczyn błędu – tylko
parser wie, w którym miejscu, który znak jest dozwolony i dzięki temu jest w
stanie wydrukować bardziej deskryptywny komunikat o błędzie i podjąć rozsądną
próbę kontynuacji.

23

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (23)

Obsługa błędów – gramatyka

• definicja sterowana składnią – nieterminal S:

S → A B C { if A.len = B.len and
B.len = C.len
then writeln('OK')
else writeln('Error')

A → a RA { A.len := RA.length + 1 }

RA → a RA1 { RA.length:=RA1.length + 1; }
RA → ε { RA.length:=0 }

• definicja sterowana składnią – nieterminal A:

Język wejściowy jest językiem kontekstowym, więc nie da się go opisać
gramatyką LL(1). Musimy zdefiniować gramatykę bezkontekstową opisującą
szerszy język (zgodny z wyrażeniem regularnym a+b+c+), a następnie za
pomocą akcji semantycznych sprawdzić, czy wejście jest poprawne.
Całe wejście (S) składa się z ciągu liter a (nieterminal A), ciągu liter b (nieterminal
B) i ciągu liter c (nieterminal C). Nieterminale A, B i C mają atrybuty
syntetyzowane len, w których będzie akumulowana długość ciągów
poszczególnych liter. Po przetworzeniu całego wejścia porównywane są długości
poszczególnych ciągów, jeśli są równe drukowany jest komunikat „OK”, jeśli są
różne – komunikat „Error”.
Ciąg liter a (opisany nieterminalem A) składa się z pojedynczej litery a i reszty
(RA). Rezultatem (atrybutem syntetyzowanym len symbolu A) będzie więc
długość reszty (atrybutu length symbolu RA) powiększona o 1.
Reszta (RA) to albo litera a i dalszy ciąg reszty (RA1), albo napis pusty. W
pierwszym przypadku rezultatem (atrybut length nieterminala RA) będzie długość
reszty (atrybut length symbolu RA1) powiększona o 1, w drugim przypadku –
bazowym – 0.
Nieterminale B (RB) i C (RC) mają (z dokładnością do rozpoznawanych znaków)
identyczną definicję.

24

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (24)

Obsługa błędów – rozbudowa skanera

• do realizacji obsługi błędów przydatna będzie
możliwość wycofania do strumienia wejściowego
zadanego tokenu

• niezbędne jest rozbudowanie interfejsu o:
– dodatkową zmienną LLusymb przechowującą

wycofany token:
int LLusymb = -1;

– funkcję LLpushBack wycofującą token:
void LLpushBack(int token)
{ LLusymb = token; }

Obsługa błędów wymaga rozbudowania interfejsu między parserem a skanerem
o możliwość wycofania do strumienia wejściowego zadanego tokenu.
Potrzebna będzie dodatkowa zmienna (LLusymb) do przechowywania
wycofanego tokenu oraz funkcja (LLpushback) wycofująca token podany jako
argument wywołania.

25

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (25)

Obsługa błędów – modyfikacje skanera

• niektóre dotychczas używane funkcje również
wymagają odpowiednich modyfikacji:

int LLlookAhead(void)
{
if(LLusymb == -1)return LLcsymb;
else return LLusymb;

}
void LLread(void)
{
if(LLusymb != -1)LLusymb = -1;
else LLcsymb = yylex();

}

Używane wcześniej funkcje LLlookAhead i LLread należy odpowiednio
zmodyfikować. Funkcja LLInitLexScanner nie wymaga modyfikacji.

26

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (26)

Obsługa błędów – aksjomat S

• implementacja nieterminala S:

void S(void)
{
int l_a, l_b, l_c;
A(&l_a);
B(&l_b);
C(&l_c);
if((l_a == l_b) &&

(l_b == l_c))puts("OK");
else printf("Error");

}

W implementacji nieterminala S (aksjomatu gramatyki):
•deklarujemy zmienne l_a, l_b, l_c, w których przechowywana będzie wartość
atrybutów syntetyzowanych len nieterminali A, B i C
•kolejno wywołujemy funkcje implementujące nieterminale A, B i C podając jako
parametry wskaźniki do odpowiednich zmiennych
•po przetworzeniu wejścia porównujemy długości ciągów i drukujemy odpowiedni
komunikat.

27

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (27)

Obsługa błędów – nieterminal A

• implementacja nieterminala A:
void A(int *len)
{

int length;
switch(LLlookAhead())
{

case 'a' : LLread(); RA(&length); (*len)=++length;
return;

case 'b' :
case 'c' : puts("Oczekiwane a");

return;
case 0 : puts("Nieoczekiwany koniec pliku");

exit(1);
default : printf("Nieoczekiwany znak {%c}",LLlookAhead());

exit(1);
}

}

W trakcie implementowania funkcji dla każdego nieterminala osobno należy
rozważyć akcje dla poprawnego wejścia i dla błędów.
Jakość detekcji i sygnalizacji błędów będzie zależeć od staranności analizy
przeprowadzonej na tym etapie. Najprostszym rozwiązaniem jest oczywiście
natychmiastowe przerwanie działania z komunikatem o błędzie. Ilość i jakość
informacji o błędzie jaka zostaje przekazana użytkownikowi jest wtedy minimalna.
Dodanie kodu diagnostyki błędów zdecydowanie powiększa rozmiar analizatora,
co widać w przedstawionym przykładzie (kod zaznaczony na czerwono służy do
obsługi błędów). W analizatorze przedstawiono jedną z możliwych interpretacji
błędów – nie w każdym przypadku da się jednoznacznie określić na czym polegał
i w którym miejscu wystąpił błąd.
Funkcja implementująca nieterminal A podgląda jeden symbol z wejścia, którym
może być:
•litera a – wejście jest poprawne, przesuwamy głowicę, wywołujemy funkcję RA w
celu obliczenia długości reszty ciągu, po powrocie zwiększamy długość o 1
(znak, który odczytaliśmy przed wywołaniem funkcji)
•litery b i c – wejście jest błędne, zabrakło litery a, drukujemy komunikat
diagnostyczny i powracamy z funkcji
•koniec pliku – wejście jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program
•dowolny inny znak – w pliku są znaki spoza zbioru rozpoznawanych znaków,
również nie ma sensu kontynuować analizy, drukujemy komunikat i przerywamy
program

28

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (28)

Obsługa błędów – nieterminal RA

• implementacja nieterminala RA:
void RA(int *length)
{

switch(LLlookAhead())
{

case 'a' : LLread(); RA(length); (*length)++;
return;

case 'b' : (*length)=0;
return;

case 'c' : puts("Oczekiwane b"); LLpushBack('b');
return;

case 0 : puts("Nieoczekiwany koniec pliku");
exit(1);

default : printf("Nieoczekiwany znak {%c}",LLlookAhead());
exit(1);

}
}

Funkcja implementująca nieterminal RA podgląda jeden symbol z wejścia, którym
może być:
•litera a – wejście jest poprawne, przesuwamy głowicę, wywołujemy
rekurencyjnie funkcję RA w celu obliczenia długości reszty ciągu, po powrocie
zwiększamy długość o 1 (znak, który odczytaliśmy przed wywołaniem funkcji)
•litera b – poprawne wejście (Follow(A)), zakończyliśmy analizę łańcucha liter a i
rozpoczynamy powrót do aksjomatu S
•litera c – wejście jest błędne, zabrakło litery b, drukujemy komunikat
diagnostyczny i aby móc kontynuować analizę po powrocie z A naprawiamy
wejście i powracamy z funkcji
•koniec pliku – wejście jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program
•dowolny inny znak – w pliku są znaki spoza zbioru rozpoznawanych znaków, nie
ma sensu kontynuować analizy, drukujemy komunikat i przerywamy program

29

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (29)

Obsługa błędów – nieterminal B

• implementacja nieterminala B:
void B(int *len)
{

int length;
switch(LLlookAhead())
{

case 'b' : LLread();
RB(&length);
(*len)=++length;
return;

case 'c' : puts("Oczekiwane b");
return;

/* case 0 : obsłużony w RA */
default : printf("Nieoczekiwany znak {%c}",LLlookAhead());

exit(1);
}

}

Funkcja implementująca nieterminal B podgląda jeden symbol z wejścia, którym
może być:
•litera b – wejście jest poprawne, przesuwamy głowicę, wywołujemy funkcję RB w
celu obliczenia długości pozostałej części łańcucha a po powrocie zwiększamy
długość o 1 (znak, który odczytaliśmy przed wywołaniem funkcji)
•litera c – wejście jest błędne, zabrakło litery b, drukujemy komunikat
diagnostyczny i powracamy z funkcji
•koniec pliku – błąd, który został już obsłużony w funkcji RA
•dowolny inny znak – w pliku są znaki spoza zbioru rozpoznawanych znaków, nie
ma sensu kontynuować analizy, drukujemy komunikat i przerywamy program

30

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (30)

Obsługa błędów – nieterminal RB

• implementacja nieterminala RB:
void RB(int *length)
{

switch(LLlookAhead())
{

case 'b' : LLread();
RB(length);
(*length)++;
return;

case 'c' : (*length)=0;
return;

case 0 : puts("Nieoczekiwany koniec pliku");
exit(1);

default : printf("Nieoczekiwany znak {%c}",LLlookAhead());
exit(1);

}
}

Procedura RB podgląda jeden symbol z wejścia, którym może być:
•litera b – wejście jest poprawne, przesuwamy głowicę, wywołujemy
rekurencyjnie funkcję RB w celu obliczenia długości dalszego ciągu łańcucha, po
powrocie zwiększamy długość o 1 (znak, który odczytaliśmy przed wywołaniem
funkcji)
•litera c – poprawne wejście (Follow(B)), zakończyliśmy analizę łańcucha liter b i
rozpoczynamy powrót do aksjomatu S
•koniec pliku – wejście jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program
•dowolny inny znak – w pliku są znaki spoza zbioru rozpoznawanych znaków,
kontynuowanie analizy jest bezcelowe, drukujemy komunikat i przerywamy
program

31

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (31)

Obsługa błędów – nieterminal C

• implementacja nieterminala C:
void C(int *len)
{

int length;
switch(LLlookAhead())
{

case 'c' : LLread();
RC(&length);
(*len)=++length;
return;

/* case 0 : obsłużony w RB */
default : printf("Nieoczekiwany znak {%c}",LLlookAhead());

exit(1);
}

}

Procedura C podgląda jeden symbol z wejścia, którym może być:
•litera c – wejście jest poprawne, przesuwamy głowicę, wywołujemy funkcję RC w
celu obliczenia długości dalszego ciągu łańcucha, po powrocie zwiększamy
długość o 1 (znak, który odczytaliśmy przed wywołaniem funkcji)
•koniec pliku – błąd, który został już obsłużony w RB
•dowolny inny znak jest błędem – drukujemy komunikat i przerywamy program

32

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (32)

Obsługa błędów – nieterminal RC

• implementacja nieterminala RC:
void RC(int *length)
{

switch(LLlookAhead())
{

case 'c' : LLread();
RC(length);
(*length)++;
return;

case 0 : (*length)=0;
return;

default : printf("Nieoczekiwany znak {%c}",LLlookAhead());
exit(1);

}
}

Procedura RC podgląda jeden symbol z wejścia, którym może być:
•litera c – wejście jest poprawne, przesuwamy głowicę, wywołujemy
rekurencyjnie funkcję RC w celu obliczenia długości dalszego ciągu łańcucha, po
powrocie zwiększamy długość o 1 (znak, który odczytaliśmy przed wywołaniem
funkcji)
•koniec pliku – poprawne wejście (Follow(C)), zakończyliśmy analizę łańcucha
liter c i rozpoczynamy powrót do aksjomatu S
•dowolny inny znak jest błędem – przerywamy analizę, drukujemy komunikat i
przerywamy program

33

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (33)

LLgen – implementacja atrybutów

• w generatorze LLgen atrybuty symboli są
implementowane w identyczny sposób jak w
języku C (jako parametry funkcji):
– atrybuty syntetyzowane jako parametry

wyjściowe (na poziomie języka C – wskaźniki)
– atrybuty dziedziczone jako parametry

wejściowe (na poziomie języka – C zmienne
przekazywane przez wartość)

W generatorze LLgen atrybuty symboli są implementowane w dokładnie taki sam
sposób jak w języku C.
Atrybuty są implementowane jako parametry funkcji:
•atrybuty syntetyzowane jako parametry wyjściowe (na poziomie języka C –
wskaźniki)
•atrybuty dziedziczone jako parametry wejściowe (na poziomie języka C –
zmienne przekazywane przez wartość)

34

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (34)

LLgen – implementacja atrybutów

• generator LLgen nie nakłada jawnych
ograniczeń na liczbę i typ atrybutów symboli

• np. nieterminal spec w produkcji:
spec(int p1; int p2;

int *p3; double *p4;)
{ int l1; double l2; } : …

ma:
2 atrybuty dziedziczone (p1 i p2)
2 atrybuty syntetyzowane (p3 i p4)
2 zmienne lokalne (l1 i l2)

Generator LLgen nie nakłada własnych, dodatkowych ograniczeń na liczbę i typ
atrybutów ponad te, które wynikają z użycia języka C.
Atrybuty i zmienne lokalne deklarowane są w produkcji, w której dany nieterminal
znajduje się po lewej stronie (jest tylko jedna taka produkcja dla każdego
nieterminala, ponieważ w LLgenie alternatywne prawe strony muszą być
zapisywane po znaku ‘|’).
Atrybuty definiujemy zaraz po nazwie symbolu, w nawiasach okrągłych,
rozdzielając je średnikami, średnik po ostatnim atrybucie jest opcjonalny.
Zmienne lokalne deklarujemy po nazwie symbolu i atrybutach – w nawiasach
klamrowych.
Użycie atrybutów w LLgenie zostanie pokazane na tych samych przykładach,
które były wykorzystane wcześniej, przy implementacji analizatorów w języku C.
Pozwoli to na porównanie o ile wykorzystanie generatora pozwala uprościć
implementację translatora.
Nie zostaną omówione zasady obsługi błędów, analiza jaką trzeba przeprowadzić
jest dokładnie taka sama, jak w przypadku implementacji w języku C, a
implementacja funkcji LLmessage służącej do obsługi błędów została omówiona
w wykładzie poświęconym podstawom generatora LLgen.

35

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (35)

LLgen – atrybuty syntetyzowane

• specyfikacja analizatora obliczającego długość
ciągu binarnego:

%start parse, S ;

S { int len; }
: L(&len) { printf("\n[%d]\n",len); }
;

L(int *length)
: '0' L(length) { (*length)++; }
| '1' L(length) { (*length)++; }
| { *length = 0; }
;

Wykorzystanie atrybutu dziedziczonego w LLgenie można zademonstrować na
przykładzie obliczania długości ciągu binarnego (problem i schemat translacji
zostały przedstawione na slajdzie 11.).
Nieterminal S jest aksjomatem gramatyki, ma zmienną lokalną len, która posłuży
do przechowywania długości ciągu w trakcie obliczeń. Służy jedynie do
rozwinięcia nieterminala L i wydrukowania obliczonego w nim rezultatu.
Nieterminal L ma atrybut dziedziczony length. Po napotkaniu cyfry binarnej
rekurencyjnie wywołuje sam siebie, a po powrocie zwiększa długość o 1.
Przypadkiem bazowym jest ciąg pusty – długość ciągu wynosi wtedy 0.

36

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (36)

LLgen – atrybuty syntetyzowane

• alternatywne specyfikacje nieterminala L:

L(int *length)
: ['0' | '1'] L(length) { (*length)++; }
| { *length = 0; }
;

L(int *length)
: '0' L(length) { (*length)++; }
| '1' L(length) { (*length)++; }
| { *length = 0; }
;

tradycyjna notacja:

wykorzystanie rozszerzeń LLgena:

Warto zauważyć jakie możliwości uproszczenia zapisu dają rozszerzenia składni
wprowadzone do generatora LLgen.
W przykładzie zestawiono tradycyjny zapis produkcji dla nieterminala L z wersją,
w której wykorzystano rozszerzenia, dzięki którym zapis specyfikacji jest krótszy,
a przy okazji zmniejszył się kod programu wynikowego.

37

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (37)

LLgen – atrybuty dziedziczone

• specyfikacja analizatora badającego parzystość
liczby binarnej:

%start parse, S ;
S : '0' R(0)
| '1' R(1)
;

R(int parity)
: S
| { if(parity == 1)puts("even");

else puts("odd");
}

;

Wykorzystanie atrybutu dziedziczonego w LLgenie można zademonstrować na
przykładzie badania parzystości liczby binarnej (problem i schemat translacji
zostały przedstawione na slajdzie 14.).
Nieterminal S (aksjomat gramatyki) wczytuje z wejścia cyfrę binarną i przekazuje
informację o niej jako atrybut dziedziczony nieterminala R.
Nieterminal R, jeżeli natrafi na ciąg pusty (koniec pliku) drukuje na postawie
atrybutu parity odpowiedni komunikat, a w przeciwnym przypadku powraca do
rozwijania nieterminala S.

38

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (38)

LLgen – atrybuty tokenów

• obliczanie sumy liczb – specyfikacja skanera:

%{
#include <stdio.h>
extern int token_val;
#include "Lpars.h"

%}
%%
\({ return '('; }
\) { return ')'; }
\, { return ','; }
" " { return ' '; }
[0-9]+ { token_val = atoi(yytext);

return num;
}

Posługiwanie się atrybutami tokenów pokażemy na przykładzie obliczania sumy
liczb (problem i schemat translacji zostały przedstawione na slajdzie 17.).
LLgen nie oferuje żadnego systemowego rozwiązania problemu przekazywania
atrybutów tokenów. Problem ten musimy więc rozwiązać samodzielnie za
pomocą zmiennych globalnych. Jest więc to takie samo podejście jakie zostało
wykorzystane w implementacji translatorów za pomocą języka C.
W analizatorze leksykalnym deklarujemy zewnętrzną zmienną token_val służącą
do przekazywania wartości rozpoznanej liczby (atrybutu terminala num).
LLgen ulży nam natomiast w kwestii przypisywania stałych nazwanym tokenom –
wystarczy odpowiednie deklaracje umieścić w specyfikacji analizatora
składniowego, a do skanera włączyć plik interfejsu Lpars.h.

39

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (39)

LLgen – atrybuty tokenów

• obliczanie sumy liczb – specyfikacja pasera:

{
int token_val;

}

%token num;

%start parse, S ;

S : '(' num R(token_val)
;

R(int sum) : ')' { printf("suma = %d", sum); }
| ',' num R(sum + token_val)
;

Specyfikacja analizatora składniowego zawiera deklarację globalnej zmiennej
token_val, deklarację tokenu num oraz aksjomatu i nazwy funkcji
implementującej aksjomat.
Wejście (nieterminal S) składa się z lewego nawiasu, liczby i reszty (R). Po
odczytaniu liczby jej wartość (zmienna token_val) jest przekazywana jako atrybut
dziedziczony nieterminala R.
Reszta (R) może być:
•prawym nawiasem kończącym wejście – wtedy drukujemy rezultat (atrybut
dziedziczony sum nieterminala R)
•przecinkiem, kolejną liczbą i resztą – reszta jako argument otrzymuje sumę
dotychczas przetworzonych elementów i wartość bieżącej liczby (token_val).

40

Podstawy kompilatorów

Translacja sterowana składnią w metodzie zstępującej (40)

Dalsza lektura

• translacja sterowana składnią:
– Aho A. V., Sethi R., Ullman J. D., Compilers:

Principles, Techniques, and Tools, Addison-Wesley,
1986

– Waite W. M., Goos G., Konstrukcja kompilatorów,
WNT 1989

• generator LLgen:
– Grune D., Jacobs C. J. H., A Programmer-friendly

LL(1) Parser Generator, Software - Practice and
Experience, vol. 18, no. 1, pp. 29-38, 1/1988

– Jacobs C. J. H., LLgen, an extended LL(1) parser
generator, http://tack.sourceforge.net/doc/LLgen.html

