Podstawy kompilatorow

Translacja sterowana sktadnig w metodzie
zstepujacej

\ &

Wojciech Complak
Woijciech.Complak@cs.put.poznan.pl

ONLINE

Podstawy kompilatorow

Plan wyktadu

 translacja sterowana sktadnig

« definicje sterowane sktadnig i schematy translaciji
 atrybuty syntetyzowane i dziedziczone

« definicje S-atrybutowe i L-atrybutowe

« implementacja translacji sterowanej sktadnig w
metodzie zstepujacej w jezyku C i za pomocg
generatora LLgen

Translacja sterowana sktadnig w metodzie zstepujacej (2)

W ramach wyktadu zostang omoéwione nastepujace zagadnienia:
*czym jest translacja sterowana sktadnig ?

«definicje sterowane sktadnig i schematy translacji

«atrybuty syntetyzowane i dziedziczone

«definicje S-atrybutowe i L-atrybutowe

simplementacja translacji sterowanej sktadnig w metodzie zstepujacej w jezyku C
i za pomocg generatora LLgen

Podstawy kompilatorow

Translacja sterowana sktadnig

 translacja sterowana sktadnig to translacja
jezykow oparta o gramatyki bezkontekstowe, w
ktorej:

— z konstrukcjami jezyka programowania
wigzana jest pewna informacja poprzez
dotgczenie atrybutéw do symboli gramatyki
reprezentujgcych te konstrukcje

— wartosci atrybutow obliczane sg przez tzw.
reguty semantyczne zwigzane z produkcjami
gramatyki

Translacja sterowana sktadnig w metodzie zstepujacej (3)

Translacja sterowana sktadnig to translacja jezykéw oparta o gramatyki
bezkontekstowe, w ktorej:

*z konstrukcjami jezyka programowania wigzana jest pewna informacja poprzez
dotgczenie atrybutow do symboli gramatyki reprezentujgcych te konstrukcje

swartosci atrybutéw obliczane sg przez tzw. reguty semantyczne zwigzane z
produkcjami gramatyki

Podstawy kompilatorow

Definicje sterowane sktadnig i schematy translacji

* istniejg dwie notacje taczace reguty semantyczne
z produkcjami

— definicje sterowane sktadnig — ukrywajg wiele
szczegotow implementacyjnych, nie wymagajg
jawnego okreslania kolejnos¢ obliczania regut
semantycznych

— schematy translacji — wskazujg kolejnosc¢
ewaluacji regut semantycznych dzieki czemu
widocznych jest wiecej szczegotow
implementacyjnych

Translacja sterowana sktadnig w metodzie zstepujacej (4)

Istniejg dwie notacje stuzgce do wigzania regut semantycznych z produkcjami:

«definicje sterowane sktadnig — notacja wysokopoziomowa ukrywajgca wiele
szczegotow implementacyjnych i nie wymagajgca jawnego okreslania kolejnosci
obliczania regut semantycznych

*schematy translacji — notacja niskopoziomowa wskazujgca kolejnos¢ ewaluaciji

regut semantycznych dzieki czemu widocznych jest wiecej szczegotdw
implementacyjnych

Podstawy kompilatorow

Definicje sterowane sktadnig

« definicje sterowane sktadnig sg uogodlnieniem
gramatyki bezkontekstowej, w ktorej z kazdym
symbolem zwigzany jest pewien zbior atrybutow

« atrybuty dzielimy na syntetyzowane i
dziedziczone

« atrybuty mogq reprezentowac¢ dowolne wielkosci
(napisy, liczby, typy, adresy ...)
» wartosci atrybutow w wezle drzewa wywodu sg

okreslane przez reguty semantyczne zwigzane z
produkcjg przypisang do tego wezta

Translacja sterowana sktadnig w metodzie zstepujacej (5)

Definicje sterowane sktadnig sg uogolnieniem gramatyki bezkontekstowej, w
ktorej z kazdym symbolem gramatyki zwigzany jest pewien zbior atrybutow.

Atrybuty — w zaleznosci od sposobu ich ewaluacji — dzielimy na syntetyzowane i
dziedziczone.

Atrybutow mozemy uzy¢ do przechowywania informacji dowolnego rodzaju, np.
napisow, liczb, typéw, adresow ...

Wartosci atrybutow w wezle drzewa wywodu sg okreslane przez reguty
semantyczne zwigzane z produkcjg przypisang do tego wezta drzewa.

Podstawy kompilatorow

Atrybuty syntetyzowane i dziedziczone

» w definicji sterowanej sktadnig z kazdg produkcjg
gramatyki B —» X, X, ... X, jest zwigzany zbior
regut semantycznych o postaci:

b :=1(p4, Py, ..., P,), gdzie:
— b jest atrybutem syntetyzowanym symbolu B,
apq, Py ---, P, Sa atrybutami symboli X;, X,,
e X,
— b jest atrybutem dziedziczonym symbolu X, a
P+, P, ..., P, S atrybutami symboli B, X, X,,
e X

Translacja sterowana sktadnig w metodzie zstepujacej (6)

W definicji sterowanej sktadnig z kazdg produkcjg gramatyki mozemy zwigzacé
zbioér regut semantycznych (akcji), w ktérych obliczane sg wartosci atrybutow.

Wartosci atrybutow syntetyzowanych obliczane sg na podstawie wartosci
atrybutéw dzieci tego wezta w drzewie wywodu. Na poziomie reguty
semantycznej oznacza to, ze atrybut symbolu stojgcego po lewej stronie
produkcji jest funkcjg atrybutow symboli stojgcych po prawej stronie produkcji.

Wartosci atrybutéw dziedziczonych obliczane sg na podstawie wartosci
atrybutdéw sgsiaddw i rodzica tego wezta w drzewie wywodu. Na poziomie reguty
semantycznej oznacza to, ze atrybut symbolu stojgcego po prawej stronie
produkcji jest funkcjg atrybutow symbolu po lewej stronie produkciji i atrybutow
symboli po prawej stronie produkcji.

Przyjmuje sie, ze terminale nie mogg mie¢ atrybutéw dziedziczonych (w definic;ji
sterowanej sktadnig nie ma regut semantycznych dla terminali). Zwykle zaktada
sie rowniez, ze aksjomat gramatyki nie ma atrybutow dziedziczonych.

Podstawy kompilatorow

Definicje S-atrybutowe i L-atrybutowe

» wsrod definicji sterowanych sktadnig wyrézniamy
dwie podklasy:
— S-atrybutowe — tylko atrybuty syntetyzowane
— L-atrybutowe — kazdy atrybut moze byc¢:
« atrybutem syntetyzowanym albo

« atrybutem dziedziczonym symbolu X; w
produkcji B —» X, X, ... X ... X, ktory
zalezy od atrybutéw symboli X; X, ... X,
oraz atrybutu dziedziczonego symbolu B

Translacja sterowana sktadnig w metodzie zstepujacej (7)

Wsrdd definicji sterowanych sktadnig wyrdzniamy dwie podklasy:

«definicje S-atrybutowe, w ktérych uzywane sg jedynie atrybuty syntetyzowane
«definicje L-atrybutowe, w ktérych kazdy atrybut moze by¢:

atrybutem syntetyzowanym albo

atrybutem dziedziczonym symbolu stojgcego po prawej stronie produkcji, ktory

zalezy od atrybutéw symboli stojgcych po prawej stronie produkcji na lewo od
niego i od atrybutu dziedziczonego symbolu stojgcego po lewej stronie produkciji.

Kazda definicja S-atrybutowa jest rowniez L-atrybutowa

Definicja L-atrybutowa jest szczegdlnie istotna z praktycznego punktu widzenia —
translacja moze by¢ wykonywana w trakcie analizy sktadniowej wejscia i nie ma
potrzeby jawnego budowania drzewa wywodu (dzieki czemu zyskujemy na
wydajnosci analizatora).

Podstawy kompilatorow

Translacja sterowana sktadnig w metodzie zstepujgcej

« w ramach wyktadu zademonstrowane zostanie
konstruowanie analizatoréw dziatajgcych metodg
rekurencyjnych zejs¢ bez nawrotow najpierw w
jezyku C, a nastepnie przy uzyciu generatora
LLgen

» gramatyki muszg by¢ LL(1), jesli nie sg — nalezy:
— wyeliminowac lewostronng rekurencje
— przeprowadzi¢ lewostronng faktoryzacje
— odpowiednio dostosowac akcje semantyczne

Translacja sterowana sktadnig w metodzie zstepujacej (8)

W ramach wyktadu zostanie zademonstrowane konstruowanie analizatoréw
dziatajgcych metoda rekurencyjnych zej$¢ bez nawrotéw najpierw w jezyku C, a
nastepnie przy uzyciu generatora LLgen.

Tego typu analizatory sg efektywne, ale naktadajg pewne istotne ograniczenia na
gramatyke. Przed przystgpieniem do implementacji analizatora nalezy usungc
ewentualng lewostronng rekurencje i niejednoznacznosci oraz — jesli jest to
konieczne — przeprowadzi¢ lewostronng faktoryzacje (zagadnienia te zostaty
szerzej omowione w wyktadzie poswieconym analizie sktadniowej metodg
zstepujaca).

Podczas modyfikacji definicji sterowanych sktadnig trzeba réwniez odpowiednio
zmodyfikowac¢ akcje semantyczne.

W ramach wyktadu poswieconego podstawom generatora LLgen omowiono jego
rozszerzenia, ktore pozwalajg obej$¢ wiekszos¢ wymienionych ograniczen.

Podstawy kompilatorow

Interfejs do analizatora leksykalnego

» do analizy leksykalnej zostang wykorzystane
analizatory wygenerowane przez LEXa

 dla uproszczenia komunikacji ze skanerem
warto odpowiednio rozszerzyc jego interfejs:

int LLcsymb;
int LLlookAhead (void) { return LLcsymb; }
void LLread (void) { LLcsymb = yylex(); }

void InitLexScanner (void) { LLread(),; }

Translacja sterowana sktadnig w metodzie zstepujacej (9)

W implementacji translatoréw w jezyku C zostang wykorzystane skanery
wygenerowane za pomocg LEXa.

Dla uproszczenia komunikacji z analizatorem leksykalnym warto odpowiednio
rozszerzy¢ jego interfejs o:

spomochniczg zmienng LLcsymb, ktérg bedzie przechowywac biezacy token
funkcje LLIookAhead pozwalajacag podejrze¢ jeden token z wejscia
funkcje LLread przesuwajgcg gtowice skanera na nastepny token

funkcje InitLexScanner inicjalizujaca skaner poprzez wczytanie pierwszego
symbolu z wejscia.

Podstawy kompilatorow

Atrybuty — zasady implementaciji

 atrybuty symboli bedg implementowane jako
parametry funkciji:
— atrybuty syntetyzowane jako parametry
wyjsciowe (na poziomie jezyka C — wskazniki)
— atrybuty dziedziczone jako parametry
wejsciowe (na poziomie jezyka C — zmienne
przekazywane przez wartosc)
» kazdy symbol moze miec wiele atrybutow

(ewentualne ograniczenia wynikajg tylko z
uzywanego kompilatora jezyka C)

Translacja sterowana sktadnig w metodzie zstepujacej (10)

Atrybuty symboli gramatyki bedg implementowane jako parametry funkciji.
Atrybuty syntetyzowane jako parametry wyjsciowe (na poziomie jezyka C —
wskazniki), atrybuty dziedziczone jako parametry wejsciowe (na poziomie jezyka
C — zmienne przekazywane przez wartosc).

Z przyjetej metody implementacji wynika, ze:

*kazdy symbol moze mie¢ wiele atrybutéw (kompilator zgodny ze standardem
C99 musi pozwala¢ na uzycie co najmniej 127 parametréw funkcji)

typy atrybutéw syntetyzowanych i dziedziczonych podlegajg tym samym
zasadom co parametry funkcji w jezyku C.

Przedstawiong metode mozna zastosowac rowniez w kazdym innym jezyku
programowania, ktéry pozwala na korzystanie z podprogramow rekurencyjnych i

przetwarzanie tekstu (np. Pascal i Ada, ale nie Basic i Fortan). Odpowiednie
dostosowanie notacji i nazw typdw nie powinno stanowic istotnego problemu.

Korzystanie z atrybutow syntetyzowanych i dziedziczonych zostanie
zademonstrowane na przyktadach.

10

Podstawy kompilatorow

Atrybuty syntetyzowane — dtugosc¢ ciggu binarnego

« w implementacji analizatora obliczajgcego
dtugosc¢ ciggu cyfr binarnych wykorzystany
zostanie atrybut syntetyzowany

» do implementacji analizatora uzyjemy
nastepujacej definicji sterowanej sktadnia:

S > L { writeln(L.length) }

L—-> 0L, { L.length := L;.length + 1 }
L-> 1L, { L.length := L;.length + 1 }
L > ¢ { L.length := 0 }

* i analizatora leksykalnego o specyfikacji:
%%

[01] { return yytext[0]; }

Translacja sterowana sktadnig w metodzie zstepujacej (11)

Wykorzystanie atrybutu syntetyzowanego zademonstrowane zostanie na
przyktadzie analizatora obliczajgcego i drukujgcego dtugosc¢ ciggu cyfr binarnych.

Jednostkowa produkcja S —> L postuzy do wypisania rezultatu.

Dtugos¢ ciggu zostanie obliczona w atrybucie syntetyzowanym length
nieterminala L, w ktérym po kazdym natrafieniu na cyfre binarng (0 lub 1)
bedziemy rekurencyjnie powtarza¢ rozpoznawanie az do osiggniecia przypadku
bazowego — ciggu pustego. Ciag pusty ma dtugos¢ 0, a przy kazdym powrocie z
rekurencji wartosc atrybutu length bedzie zwigkszana o 1.

Zadaniem analizatora leksykalnego bedzie rozpoznawanie i zwracanie cyfr
binarnych.

11

Podstawy kompilatorow

Atrybuty syntetyzowane — nieterminal L

* implementacja nieterminala L.:

void L(int *length)
{
switch (LLlookAhead())

{

case '0'

case 'l' : LLread();
L(length) ;
(*length) ++;
return;

case 0 : *length = 0;
return;

Translacja sterowana sktadnig w metodzie zstepujacej (12)

Funkcja implementujgca nieterminal L ma jeden parametr — wskaznik na zmienng
length (atrybut syntetyzowany).

Po kazdym wywotaniu funkcja sprawdza symbol widoczny na wejsciu. Po
natrafieniu na cyfre binarng gtowica jest przesuwana na kolejny symbol
(wywotaniem LLread()) i funkcja rekurencyjnie wywotuje samg siebie. Po
powrocie z wywotania zostanie zwiekszona wartos¢ atrybutu length.

Po natrafieniu na koniec pliku (stata 0) atrybut length zostanie zainicjalizowany
wartoscig 0 (dtugos¢ ciggu pustego) i rozpocznie sie powrdét z rekurencii.
Niestety, w etykiecie instrukcji switch nie mozna skorzysta¢ ze statej EOF,
poniewaz w jezyku C ma ona wartosc¢ -1, a LEX sygnalizuje koniec pliku
zwracajac 0.

Wykorzystanie cech jezyka C umozliwito tatwe wykonanie optymalizaciji
implementac;ji funkcji L. Poniewaz akcje semantyczne wykonywane po
rozpoznaniu 0 i 1 byty identyczne, wiec mozna byto wykorzysta¢ ten sam kod w
obu przypadkach (w Pascalu czy Adzie nie bytoby juz to tak proste).

12

Podstawy kompilatorow

» implementacja nieterminala S i funkcji main:

Atrybuty syntetyzowane — nieterminal S

void S (void)
{

int len;

L(&len);

printf ("\n%d\n", len) ;
}

int main()

{

InitLexScanner () ;

S();

return O;

}

Translacja sterowana sktadnig w metodzie zstepujacej (13)

W funkcji implementujacej nieterminal S zadeklarowano lokalng zmienng len,
ktora postuzy do akumulowania dtugosci tancucha. Wskaznik do tej zmiennej jest
przekazywany jako argument w wywotaniu funkcji L. Po powrocie z funkcji L

drukujemy obliczong przez nig dtugosc tancucha.

W funkcji main nalezy zainicjalizowa¢ analizator leksykalny, a nastepnie wywotac

funkcje S, ktora jest implementacjg aksjomatu gramatyki.

13

Podstawy kompilatorow

Atrybuty dziedziczone — parzystosc¢ ciggu

« w implementacji analizatora sprawdzajgcego
parzystosc liczby binarnej wykorzystany
zostanie atrybut syntetyzowany

» schemat translacji ma postac:

L > 0 { R.parity := 0 } R

L > 1 { R.parity :=1 } R

R > L

R > ¢ { if R.parity = 0

then writeln ("parzysta'")
else writeln("nieparzysta") }

« analizator leksykalny jest taki sam, jak w
poprzednim przyktadzie

Translacja sterowana sktadnig w metodzie zstepujacej (14)

Wykorzystanie atrybutu dziedziczonego zademonstrowane zostanie na
przyktadzie analizatora sprawdzajgcego parzystosc¢ liczby binarne;.

Na wejsciu znajduje sie niepusty ciag cyfr binarnych tworzacych liczbe zapisang
poczgwszy od najbardziej znaczacej cyfry.

Jezeli liczba jest parzysta (najmtodszg cyfrg jest 0) ma zosta¢ wydrukowany
komunikat ,parzysta”, w przeciwnym wypadku (najmtodszg cyfrg jest 1) —
komunikat ,nieparzysta”.

Wywodzenie wejscia rozpoczyna sie od nieterminala L. Informacja o wczytanej
cyfrze jest przekazywana w atrybucie dziedziczonym parity nieterminalowi R.
Nastepnie rozwijany jest nieterminal R. Jezeli na wejsciu zostanie napotkany
koniec pliku, na podstawie wartosci atrybutu dziedziczonego drukowany jest
odpowiedni komunikat. W przeciwnym wypadku — kontynuujemy wywodzenie
nieterminala L.

Analizator leksykalny ma takg samag postac, jak w poprzednim przyktadzie.

14

Podstawy kompilatorow

Atrybuty dziedziczone — nieterminal R

* implementacja nieterminala R:

{
{

case O

default

void R(int parity)
switch (LLlookAhead())

: if(parity == 0)printf ("parzysta");

: L();

else printf ("nieparzysta") ;
return;

return;

Translacja sterowana sktadnig w metodzie zstepujacej (15)

Funkcja implementujgca nieterminal R ma jeden parametr — atrybut dziedziczony

parity przekazywany przez wartosc.

Jezeli na wejsciu widoczny jest koniec pliku, to na podstawie wartosci tego
atrybutu mozna okresli¢ jaka byfa ostatnio przeczytana cyfra i wydrukowac
odpowiedni komunikat. Jezeli na wejsciu widoczny jest jakikolwiek znak

wywotujemy funkcje L.

15

Podstawy kompilatorow

Atrybuty dziedziczone — nieterminal L

* implementacja nieterminala L.:

void L (void)
{
switch (LLlookAhead())
{
case '0' : LLread();
R(0);
return;
case 'l' : LLread();
R(1);
return;
}
}

Translacja sterowana sktadnig w metodzie zstepujacej (16)

W implementacji nieterminala L nalezy wczytac cyfre binarng z wejscia i
przekaza¢ odpowiednig informacje w argumencie wywofania funkcji R.

Funkcja L jest implementacjg aksjomatu gramatyki, wiec to ona musi zostac¢
wywotana w funkcji main.

16

Podstawy kompilatorow

Atrybuty tokenow — suma liczb

» przekazywanie atrybutow tokendéw zostanie
pokazane na przyktadzie prostego sumatora

* na wejsciu znajduje sie cigg nieujemnych liczb
catkowitych ujety w nawiasy okragte,
cigg zawiera co najmniegj jedng liczbe, jesli jest
ich wiecej — sg rozdzielone przecinkami

* nalezy napisac¢ analizator, ktory obliczy i wypisze
sume liczb

 dla przyktadowego wejscia (5, 6, 7) powinnismy
otrzymac¢ odpowiedz: 18

Translacja sterowana sktadnig w metodzie zstepujacej (17)

Postugiwanie sie atrybutami jednostek leksykalnych zademonstrujmy na
przyktadzie prostego sumatora.

Na wejsciu znajduje sie ciag nieujemnych liczb catkowitych ujety w nawiasy
okragte. Ciag zawiera co najmniej jedng liczbe, jesli jest ich wiecej — sg
rozdzielone przecinkami. Nalezy napisac analizator, ktory obliczy i wypisze sume
liczb.

17

Podstawy kompilatorow

Atrybuty tokenow — schemat translaciji

« wartosc liczby jest przekazywana z analizatora
leksykalnego za pomocg atrybutu val

* nieterminal R oblicza sume liczb w atrybucie
dziedziczonym sum

» schemat translacji ma postac:

S > (num { R.sum := num.val } R

R >) { writeln(R.sum) }
R > , num { R,.sum := R.sum + num.val } R;

Translacja sterowana sktadnig w metodzie zstepujacej (18)

W translacji wykorzystany zostanie atrybut (oczywiscie syntetyzowany) val
symbolu terminalnego num, ktéry postuzy do przekazania wartosci liczby do
analizatora sktadniowego.

Cate wejscie (S) sktadac sie bedzie z lewego nawiasu, liczby i reszty (R). Po
odczytaniu liczby jej warto$¢ (atrybut val) kopiujemy do atrybutu dziedziczonego
nieterminala R.

Reszta (R) moze byc¢:

sprawym nawiasem konczacym wejscie — wtedy drukujemy rezultat (atrybut
dziedziczony sum nieterminala R)

*przecinkiem, kolejng liczbg i resztg (R1) — do atrybutu sum dalszego ciggu
reszty przypisujemy sume dotychczas przetworzonych elementow (atrybut sum
nieterminala R) i wartos¢ biezacej liczby (num.val).

18

Podstawy kompilatorow

Atrybuty tokenow — skaner

« analizator leksykalny:

${ extern int LLlwval;
#define num 257

%}

%%

\ ({ return '('; }

\) { return ") "'; }

\, { return ','; }

(i}

[0-9]+ { LL1lval = atoi(yytext);

return num;

Translacja sterowana sktadnig w metodzie zstepujacej (19)

Analizator leksykalny zaimplementujemy w LEXie. Musi on rozpoznawac i
zwracac lewe i prawe nawiasy oraz przecinek. Ewentualne spacje na wejsciu
pomijamy.

Do przekazywania wartosci atrybutu symbolu leksykalnego musimy wykorzystaé
globalng zmienng — w tym przypadku wystarczy uzy¢ zmiennej typu catkowitego.
Jezeli bedziemy przekazywac atrybuty réznych typow mozna skorzystac¢ z unii
jezyka C.

Zmienng mozemy zdefiniowac¢ w parserze albo w skanerze. W przyktadzie
zmienna LLIval zostata zdefiniowana w parserze, a wiec w skanerze musimy
zadeklarowac jg jako zewnetrzng. Po natrafieniu na liczbe, jej wartos¢ wpisujemy
do zmiennej LLIval i zwracamy informacje o rozpoznaniu tokenu num.

Tokenowi num przypisaliSmy nazwe, wiec musimy pamietac o przypisaniu jej
odpowiedniej (wiekszej niz 256) statej. Gdyby w gramatyce byto wiecej
nazwanych tokendw najlepiej utworzy¢ zewnetrzny plik nagtdwkowy i wigcza¢ go
i do analizatora leksykalnego i sktadniowego.

19

Podstawy kompilatorow

Atrybuty tokendw — nieterminal S

« w parserze definiujemy globalng zmiennag;
int LLlval;

oraz token num:
#define num 257

» implementacja nieterminala S ma postac:

void S (void)

{
LLread(); /* (*/
LLread(); /* num */
R(LLl1lval) ;

}

Translacja sterowana sktadnig w metodzie zstepujacej (20)

Zmienng LLIval stuzacag do przekazywania atrybutu syntetyzowanego symbolu
num definiujemy w analizatorze skfadniowym.

Musimy pamietac rowniez o przypisaniu statej dla tokenu num — oczywiscie o tej
samej wartosci co w analizatorze leksykalnym.

Funkcja implementujgca nieterminal S czyta z wejscia lewy nawias, liczbe i
wywotuje funkcje R przekazujac jako argument wartosc liczby (atrybut
dziedziczony sum).

20

Podstawy kompilatorow

Atrybuty tokenow — nieterminal R

* implementacja nieterminala R:

void R(int sum)
{ switch (LLlookAhead())

{ case '")' : LLread():;
printf ("\n%d\n", sum) ;
return;
case ',' : LLread(); /* , */

LLread(); /* num */
R(sum + LLlval);
return;

Translacja sterowana sktadnig w metodzie zstepujacej (21)

Funkcja implementujgca nieterminal R podglada jeden symbol z wejscia. Jezeli
jest to nawias, wczytuje go i drukuje wartos¢ sumy.

Jezeli jest to przecinek, wczytuje go, wczytuje liczbe i wywotuje procedure R

przekazujac jako argument sume wczesniej wezytanych (zmienna sum) i warto$¢
biezgcej liczby (LLIval).

21

Podstawy kompilatorow

Obstuga bteddéw - zadanie

» problem obstugi btedow zostanie omowiony na
przyktadzie akceptora dla kontekstowego jezyka
a"b"c" dlan >0

 cafa obstuga btedow bedzie wykonywana po
stronie analizatora sktadniowego

 analizator leksykalny rozpoznaje i zwraca
pojedyncze znaki:

%%
| \n { return yytext[0]; }

Translacja sterowana sktadnig w metodzie zstepujacej (22)

We wszystkich przedstawionych wczes$niej analizatorach zaktadalismy, ze
wejscie jest poprawne. Zobaczmy teraz na przyktadzie akceptora dla
kontekstowego jezyka a*n b*n c*n jak mozna zorganizowac¢ obstuge btedow w
analizatorze sktadniowym.

Analizator leksykalny rozpoznaje dowolne znaki na wejsciu i przekazuje je do
parsera, na ktérego spada cate zadanie obstugi btedéw. Takie rozwigzanie jest o
wiele efektywniejsze, jesli chodzi o wykrywanie mozliwych przyczyn btedu — tylko
parser wie, w ktorym miejscu, ktory znak jest dozwolony i dzieki temu jest w
stanie wydrukowac bardziej deskryptywny komunikat o btedzie i podja¢ rozsgadng
probe kontynuacji.

22

Podstawy kompilatorow

Obstuga btedéw — gramatyka

« definicja sterowana skfadnig — nieterminal S:

S >ABC { if A.len = B.len and
B.len = C.len
then writeln('OK')
else writeln('Error')

« definicja sterowana skfadnig — nieterminal A:

A —> aRA { A.len := RA.length + 1 }
RA — a RA, { RA.length:=RA,.length + 1; }
RA > ¢ { RA.length:=0 }

Translacja sterowana sktadnig w metodzie zstepujacej (23)

Jezyk wejsciowy jest jezykiem kontekstowym, wiec nie da sie go opisac
gramatyka LL(1). Musimy zdefiniowa¢ gramatyke bezkontekstowg opisujacg
szerszy jezyk (zgodny z wyrazeniem regularnym a+b+c+), a nastepnie za
pomocg akcji semantycznych sprawdzi¢, czy wejscie jest poprawne.

Cate wejscie (S) sktada sie z ciggu liter a (nieterminal A), ciggu liter b (nieterminal
B) i ciggu liter ¢ (nieterminal C). Nieterminale A, B i C majg atrybuty
syntetyzowane len, w ktorych bedzie akumulowana dtugosc¢ ciggéw
poszczegolnych liter. Po przetworzeniu catego wejscia porownywane sg dtugosci
poszczegolnych ciggow, jesli sg rowne drukowany jest komunikat ,OK”, jesli sg
rézne — komunikat ,Error”.

Ciag liter a (opisany nieterminalem A) skfada sie z pojedynczej litery a i reszty
(RA). Rezultatem (atrybutem syntetyzowanym len symbolu A) bedzie wiec
dtugos$c¢ reszty (atrybutu length symbolu RA) powiekszona o 1.

Reszta (RA) to albo litera a i dalszy cigg reszty (RA1), albo napis pusty. W
pierwszym przypadku rezultatem (atrybut length nieterminala RA) bedzie diugosc¢
reszty (atrybut length symbolu RA1) powiekszona o 1, w drugim przypadku —
bazowym — 0.

Nieterminale B (RB) i C (RC) majg (z doktadnoscig do rozpoznawanych znakdéw)
identyczng definicje.

23

Podstawy kompilatorow

Obstuga btedéw — rozbudowa skanera

 do realizacji obstugi btedow przydatna bedzie
mozliwos¢ wycofania do strumienia wejsciowego
zadanego tokenu

* niezbedne jest rozbudowanie interfejsu o:

— dodatkowg zmienng LLusymb przechowujacg
wycofany token:
int LLusymb = -1;

— funkcje LLpushBack wycofujgcg token:
void LLpushBack (int token)

{ LLusymb = token; }

Translacja sterowana sktadnig w metodzie zstepujacej (24)

Obstuga btedéw wymaga rozbudowania interfejsu miedzy parserem a skanerem
o mozliwo$¢ wycofania do strumienia wejsciowego zadanego tokenu.

Potrzebna bedzie dodatkowa zmienna (LLusymb) do przechowywania
wycofanego tokenu oraz funkcja (LLpushback) wycofujgca token podany jako
argument wywofania.

24

Podstawy kompilatorow

Obstuga btedéw — modyfikacje skanera

 niektore dotychczas uzywane funkcje rowniez
wymagajg odpowiednich modyfikacji:

int LLlookAhead (void)

{
if (LLusymb == -1)return LLcsymb;
else return LLusymb;

}

void LLread (void)

{
if (LLusymb !'= -1)LLusymb = -1;
else LLcsymb = yylex()

}

Translacja sterowana sktadnig w metodzie zstepujacej (25)

Uzywane wczesniej funkcje LLIookAhead i LLread nalezy odpowiednio
zmodyfikowaé. Funkcja LLInitLexScanner nie wymaga modyfikacji.

25

Podstawy kompilatorow

Obstuga btedéw — aksjomat S

» implementacja nieterminala S:

void S (void)
{

int 1 a, 1 b, 1 c;

A(&l a);

B(&l b);

C(&l _c);

if((1l_a == 1 b) &&

(1. b ==1 c))puts("OK");
else printf ("Error") ;

Translacja sterowana sktadnig w metodzie zstepujacej (26)

W implementacji nieterminala S (aksjomatu gramatyki):

«deklarujemy zmienne |_a, |_b, |_c, w ktérych przechowywana bedzie wartos¢
atrybutéw syntetyzowanych len nieterminali A, Bi C

*kolejno wywotujemy funkcje implementujace nieterminale A, B i C podajac jako
parametry wskazniki do odpowiednich zmiennych

*po przetworzeniu wejscia porownujemy dtugosci ciggow i drukujemy odpowiedni
komunikat.

26

Podstawy kompilatorow

Obstuga bteddw — nieterminal A

* implementacja nieterminala A:

void A(int *len)

{
int length;
switch (LLlookAhead())
{

case 'a' : LLread(); RA(&length); (*len)=++length;
return;
case 'b'
case 'c' : puts("Oczekiwane a");
return;
case 0 : puts("Nieoczekiwany koniec pliku");
exit(1l);
default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l);

Translacja sterowana sktadnig w metodzie zstepujacej (27)

W trakcie implementowania funkcji dla kazdego nieterminala osobno nalezy
rozwazyC akcje dla poprawnego wejscia i dla btedow.

Jakosc¢ detekcji i sygnalizacji btedoéw bedzie zaleze¢ od starannosci analizy
przeprowadzonej na tym etapie. Najprostszym rozwigzaniem jest oczywiscie
natychmiastowe przerwanie dziatania z komunikatem o btedzie. llosc i jakos¢
informacji o btedzie jaka zostaje przekazana uzytkownikowi jest wtedy minimalna.

Dodanie kodu diagnostyki btedow zdecydowanie powieksza rozmiar analizatora,
co widac¢ w przedstawionym przyktadzie (kod zaznaczony na czerwono stuzy do
obstugi btedéw). W analizatorze przedstawiono jedng z mozliwych interpretacji
btedow — nie w kazdym przypadku da sie jednoznacznie okresli¢ na czym polegat
i w ktorym miejscu wystapit btad.

Funkcja implementujgca nieterminal A podglada jeden symbol z wejscia, ktorym
moze byc:

*litera a — wejscie jest poprawne, przesuwamy gtowice, wywotujemy funkcje RA w
celu obliczenia dtugosci reszty ciggu, po powrocie zwiekszamy dtugosc o 1

(znak, ktory odczytalismy przed wywotaniem funkcji)

slitery b i ¢ — wejscie jest btedne, zabrakto litery a, drukujemy komunikat
diagnostyczny i powracamy z funkcji

*koniec pliku — wejscie jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program

*dowolny inny znak — w pliku sg znaki spoza zbioru rozpoznawanych znakow,
rowniez nie ma sensu kontynuowac analizy, drukujemy komunikat i przerywamy
program

27

Podstawy kompilatorow

Obstuga bteddw — nieterminal RA

« implementacja nieterminala RA:

void RA(int *length)

{
switch (LLlookAhead())
{

case 'a' : LLread(); RA(length); (*length)++;
return;
case 'b' : (*length)=0;
return;
case 'c' : puts("Oczekiwane b"); LLpushBack('b');
return;
case 0 : puts("Nieoczekiwany koniec pliku");
exit(1l);
default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l);

Translacja sterowana sktadnig w metodzie zstepujacej (28)

Funkcja implementujgca nieterminal RA podglada jeden symbol z wejscia, ktorym
moze byc:

slitera a — wejscie jest poprawne, przesuwamy gtowice, wywotujemy
rekurencyjnie funkcje RA w celu obliczenia dtugosci reszty ciggu, po powrocie
zwiekszamy dtugosc o 1 (znak, ktéry odczytaliSmy przed wywotaniem funkciji)

slitera b — poprawne wejscie (Follow(A)), zakonczyliSmy analize fancucha liter a i
rozpoczynamy powrét do aksjomatu S
slitera c — wejscie jest btedne, zabrakto litery b, drukujemy komunikat

diagnostyczny i aby moc kontynuowac analize po powrocie z A haprawiamy
wejscie i powracamy z funkcji

*koniec pliku — wejscie jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program

*dowolny inny znak — w pliku sg znaki spoza zbioru rozpoznawanych znakoéw, nie
ma sensu kontynuowac analizy, drukujemy komunikat i przerywamy program

28

Podstawy kompilatorow

Obstuga bteddw — nieterminal B

* implementacja nieterminala B:

void B(int *len)
{
int length;
switch (LLlookAhead())
{
case 'b' : LLread():;
RB (&length) ;
(*len)=++length;

return;

case 'c' : puts("Oczekiwane b") ;
return;

/* case 0 : obstuzony w RA */

default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l);

Translacja sterowana sktadnig w metodzie zstepujacej (29)

Funkcja implementujgca nieterminal B podglada jeden symbol z wejscia, ktérym
moze byc:

slitera b — wejscie jest poprawne, przesuwamy gtowice, wywotujemy funkcje RB w
celu obliczenia dlugosci pozostatej czesci farncucha a po powrocie zwiekszamy
dtugos¢ o 1 (znak, ktory odczytaliSmy przed wywotaniem funkciji)

slitera c — wejscie jest btedne, zabrakto litery b, drukujemy komunikat
diagnostyczny i powracamy z funkcji

*koniec pliku — btad, ktéry zostat juz obstuzony w funkcji RA

*dowolny inny znak — w pliku sg znaki spoza zbioru rozpoznawanych znakow, nie
ma sensu kontynuowac analizy, drukujemy komunikat i przerywamy program

29

Podstawy kompilatorow

Obstuga bteddw — nieterminal RB

« implementacja nieterminala RB:

void RB(int *length)
{
switch (LLlookAhead())
{
case 'b' : LLread():;
RB (length) ;
(*length) ++;
return;
case 'c' : (*length)=0;
return;
case 0 : puts("Nieoczekiwany koniec pliku");
exit(1l);
default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l);

Translacja sterowana sktadnig w metodzie zstepujacej (30)

Procedura RB podglada jeden symbol z wejscia, ktorym moze byc¢:

slitera b — wejscie jest poprawne, przesuwamy gtowice, wywotujemy
rekurencyjnie funkcje RB w celu obliczenia dtugosci dalszego ciggu tanhcucha, po
powrocie zwiekszamy dtugosc o 1 (znak, ktéry odczytalismy przed wywotaniem
funkciji)

slitera ¢ — poprawne wejscie (Follow(B)), zakonczylismy analize tarncucha liter b i
rozpoczynamy powrét do aksjomatu S

*koniec pliku — wejscie jest puste, dalsza diagnostyka nie ma sensu, drukujemy
komunikat i przerywamy program

*dowolny inny znak — w pliku sg znaki spoza zbioru rozpoznawanych znakow,
kontynuowanie analizy jest bezcelowe, drukujemy komunikat i przerywamy
program

30

Podstawy kompilatorow

Obstuga bteddw — nieterminal C

» implementacja nieterminala C:

void C(int *len)
{
int length;
switch (LLlookAhead())
{
case 'c' : LLread():;
RC(&length) ;
(*len)=++length;

return;

/* case 0 : obstuzony w RB */

default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l) ;

Translacja sterowana sktadnig w metodzie zstepujacej (31)

Procedura C podglada jeden symbol z wejscia, ktorym moze byc:

*litera c — wejscie jest poprawne, przesuwamy gtowice, wywotujemy funkcje RC w
celu obliczenia diugosci dalszego ciggu tancucha, po powrocie zwiekszamy
dtugos¢ o 1 (znak, ktory odczytaliSmy przed wywotaniem funkciji)

*koniec pliku — btad, ktéry zostat juz obstuzony w RB
*dowolny inny znak jest btedem — drukujemy komunikat i przerywamy program

31

Podstawy kompilatorow

Obstuga btedéw — nieterminal RC

» implementacja nieterminala RC:

void RC(int *length)
{
switch (LLlookAhead())
{
case 'c' : LLread():;
RC(length) ;
(*length) ++;
return;
case 0 : (*length)=0;
return;
default : printf("Nieoczekiwany znak {%c}",LLlookAhead()) ;
exit(1l) ;

Translacja sterowana sktadnig w metodzie zstepujacej (32)

Procedura RC podglada jeden symbol z wejscia, ktérym moze byc:

slitera c — wejscie jest poprawne, przesuwamy gtowice, wywotujemy
rekurencyjnie funkcje RC w celu obliczenia dtugosci dalszego ciggu tancucha, po
powrocie zwiekszamy diugosc o 1 (znak, ktéry odczytalismy przed wywotaniem

funkciji)

*koniec pliku — poprawne wejscie (Follow(C)), zakonczylismy analize tancucha
liter ¢ i rozpoczynamy powrdét do aksjomatu S

«dowolny inny znak jest btedem — przerywamy analize, drukujemy komunikat i
przerywamy program

32

Podstawy kompilatorow

LLgen — implementacja atrybutow

« W generatorze LLgen atrybuty symboli sg
implementowane w identyczny sposob jak w
jezyku C (jako parametry funkc;ji):

— atrybuty syntetyzowane jako parametry
wyjsciowe (na poziomie jezyka C — wskazniki)

— atrybuty dziedziczone jako parametry
wejsciowe (na poziomie jezyka — C zmienne
przekazywane przez wartosc)

Translacja sterowana sktadnig w metodzie zstepujacej (33)

W generatorze LLgen atrybuty symboli sg implementowane w doktadnie taki sam
sposob jak w jezyku C.

Atrybuty sg implementowane jako parametry funkc;ji:

«atrybuty syntetyzowane jako parametry wyjSciowe (na poziomie jezyka C —
wskazniki)

«atrybuty dziedziczone jako parametry wejsciowe (na poziomie jezyka C —
zmienne przekazywane przez wartosc)

33

Podstawy kompilatorow

LLgen — implementacja atrybutow

* generator LLgen nie naktada jawnych
ograniczen na liczbe i typ atrybutow symboli
* np. nieterminal spec w produkcji:
spec(int pl; int p2;
int *p3; double *p4;)
{ int 11; double 12; }
ma:
2 atrybuty dziedziczone (p1i p2)
2 atrybuty syntetyzowane (p3 i p4)
2 zmienne lokalne (11 12)

Translacja sterowana sktadnig w metodzie zstepujacej (34)

Generator LLgen nie naktada witasnych, dodatkowych ograniczen na liczbe i typ
atrybutéw ponad te, ktére wynikajg z uzycia jezyka C.

Atrybuty i zmienne lokalne deklarowane sg w produkciji, w ktorej dany nieterminal
znajduje sie po lewej stronie (jest tylko jedna taka produkcja dla kazdego
nieterminala, poniewaz w LLgenie alternatywne prawe strony muszg byc¢
zapisywane po znaku ‘[').

Atrybuty definiujemy zaraz po nazwie symbolu, w nawiasach okragtych,
rozdzielajac je Srednikami, Srednik po ostatnim atrybucie jest opcjonalny.
Zmienne lokalne deklarujemy po nazwie symbolu i atrybutach — w nawiasach
klamrowych.

Uzycie atrybutow w LLgenie zostanie pokazane na tych samych przyktadach,
ktore byly wykorzystane wczesniej, przy implementacji analizatoréw w jezyku C.
Pozwoli to na poréwnanie o ile wykorzystanie generatora pozwala uproscic
implementacje translatora.

Nie zostang omowione zasady obstugi btedéw, analiza jakg trzeba przeprowadzi¢
jest doktadnie taka sama, jak w przypadku implementacji w jezyku C, a
implementacja funkcji LLmessage stuzacej do obstugi btedéw zostata oméwiona
w wyktadzie poswieconym podstawom generatora LLgen.

34

Podstawy kompilatorow

LLgen — atrybuty syntetyzowane

 specyfikacja analizatora obliczajgcego dtugos¢
ciagu binarnego:

%$start parse, S ;

S { int len; }
: L(&len) { printf("\n[%d]\n",len); }

L(int *length)
'0' L(length) { (*length)++; }
| '1l' L(length) { (*length)++; }
| { *length = 0; }

.
4

Translacja sterowana sktadnig w metodzie zstepujacej (35)

Wykorzystanie atrybutu dziedziczonego w LLgenie mozna zademonstrowac na
przyktadzie obliczania dtugosci ciagu binarnego (problem i schemat translacji
zostaty przedstawione na slajdzie 11.).

Nieterminal S jest aksjomatem gramatyki, ma zmienng lokalng len, ktéra postuzy
do przechowywania dtugosci ciggu w trakcie obliczen. Stuzy jedynie do
rozwiniecia nieterminala L i wydrukowania obliczonego w nim rezultatu.

Nieterminal L ma atrybut dziedziczony length. Po napotkaniu cyfry binarnej
rekurencyjnie wywotuje sam siebie, a po powrocie zwieksza diugosc¢ o 1.
Przypadkiem bazowym jest ciag pusty — dtugo$¢ ciggu wynosi wtedy 0.

35

Podstawy kompilatorow

LLgen — atrybuty syntetyzowane

« alternatywne specyfikacje nieterminala L.:

tradycyjna notacja:

L(int *length)
'0' L(length) { (*length)++; }
| '1l' L(length) { (*length)++; }
| { *length = 0; }

14

wykorzystanie rozszerzen LLgena:

L(int *length)
['0'" | '"1'] L(length) { (*length)++; }
| { *length = 0; }

.
14

Translacja sterowana sktadnig w metodzie zstepujacej (36)

Warto zauwazy¢ jakie mozliwosci uproszczenia zapisu dajg rozszerzenia sktadni
wprowadzone do generatora LLgen.

W przyktadzie zestawiono tradycyjny zapis produkcji dla nieterminala L z wersja,
w ktorej wykorzystano rozszerzenia, dzieki ktorym zapis specyfikacji jest krotszy,
a przy okazji zmniejszyt sie kod programu wynikowego.

Podstawy kompilatorow

LLgen — atrybuty dziedziczone

 specyfikacja analizatora badajgcego parzystosc¢
liczby binarnej:

%¥start parse, S ;
S : '0'" R(O)
| '1'" R(1)

R(int parity)
: S
| { if(parity == 1l)puts("even")
else puts("odd") ;
}

Translacja sterowana sktadnig w metodzie zstepujacej (37)

Wykorzystanie atrybutu dziedziczonego w LLgenie mozna zademonstrowac na
przyktadzie badania parzystosci liczby binarnej (problem i schemat translaciji
zostaty przedstawione na slajdzie 14.).

Nieterminal S (aksjomat gramatyki) wczytuje z wejscia cyfre binarng i przekazuje
informacje o niej jako atrybut dziedziczony nieterminala R.

Nieterminal R, jezeli natrafi na cigg pusty (koniec pliku) drukuje na postawie
atrybutu parity odpowiedni komunikat, a w przeciwnym przypadku powraca do
rozwijania nieterminala S.

37

Podstawy kompilatorow

LLgen — atrybuty tokenow

» obliczanie sumy liczb — specyfikacja skanera:

% {
#include <stdio.h>
extern int token_val;
#include "Lpars.h"

%}

%%

\ ({ return '('; }

\) { return ")'; }

\, { return ','; }

"o { return ' '; }

[0-9]+ { token val = atoi(yytext);

return num;

Translacja sterowana sktadnig w metodzie zstepujacej (38)

Postugiwanie sie atrybutami tokendéw pokazemy na przykfadzie obliczania sumy
liczb (problem i schemat translacji zostaty przedstawione na slajdzie 17.).

LLgen nie oferuje zadnego systemowego rozwigzania problemu przekazywania
atrybutéw tokendéw. Problem ten musimy wiec rozwigza¢ samodzielnie za
pomocg zmiennych globalnych. Jest wiec to takie samo podejscie jakie zostato
wykorzystane w implementac;ji translatoréw za pomocg jezyka C.

W analizatorze leksykalnym deklarujemy zewnetrzng zmienng token_val stuzgcg
do przekazywania wartosci rozpoznane;j liczby (atrybutu terminala num).

LLgen ulzy nam natomiast w kwestii przypisywania statych nazwanym tokenom —
wystarczy odpowiednie deklaracje umiesci¢ w specyfikacji analizatora
sktadniowego, a do skanera wigczy¢ plik interfejsu Lpars.h.

38

Podstawy kompilatorow

LLgen — atrybuty tokenow

» obliczanie sumy liczb — specyfikacja pasera:

{

int token_val;

}

%token num;
%¥start parse, S ;

S : '"(' num R(token_val)
R(int sum) : ')' { printf("suma = %d", sum); }
| ',' num R(sum + token val)

.
r

Translacja sterowana sktadnig w metodzie zstepujacej (39)

Specyfikacja analizatora sktadniowego zawiera deklaracje globalnej zmiennej
token_val, deklaracje tokenu num oraz aksjomatu i nazwy funkcji
implementujgcej aksjomat.

Wejscie (nieterminal S) sktada sie z lewego nawiasu, liczby i reszty (R). Po
odczytaniu liczby jej warto$¢ (zmienna token_val) jest przekazywana jako atrybut
dziedziczony nieterminala R.

Reszta (R) moze byc¢:

sprawym nawiasem konczacym wejscie — wtedy drukujemy rezultat (atrybut
dziedziczony sum nieterminala R)

*przecinkiem, kolejng liczbg i resztg — reszta jako argument otrzymuje sume
dotychczas przetworzonych elementow i wartos¢ biezacej liczby (token_val).

39

Podstawy kompilatorow

Dalsza lektura

 translacja sterowana skfadnia;

— Aho A. V., Sethi R., Ullman J. D., Compilers:
Principles, Techniques, and Tools, Addison-Wesley,
1986

— Waite W. M., Goos G., Konstrukcja kompilatorow,
WNT 1989

* generator LLgen:

— Grune D., Jacobs C. J. H., A Programmer-friendly
LL(1) Parser Generator, Software - Practice and
Experience, vol. 18, no. 1, pp. 29-38, 1/1988

— Jacobs C. J. H., LLgen, an extended LL(1) parser
generator, http://tack.sourceforge.net/doc/LLgen.html

Translacja sterowana sktadnig w metodzie zstepujacej (40)

40

