Teoria informacji/TI Ćwiczenia 3

From Studia Informatyczne

Spis treści

Ćwiczenia

Ćwiczenie 1 [Sfałszowana moneta]

Monetę nazywamy sfałszowaną, jeśli prawdopodobieństwo wypadnięcia orła jest inne niż reszki.

Jak przy pomocy sfałszowanej monety dokonać sprawiedliwego losowania między dwiema osobami?


Ćwiczenie 2 [Moneta dla trzech]

W jaki sposób można przy pomocy monety przeprowadzić losowanie wśród trzech osób?


Ćwiczenie 3 [Magiczna sztuczka]

W pewnej magicznej sztuczce bierze udział magik, jego asystent i ochotnik z widowni. Asystent, którego nadnaturalne zdolności mają być pokazane, jest zamykany w dźwiękoszczelnym pomieszczeniu. Magik daje ochotnikowi 6 pustych kart: 5 białych i jedną zieloną. Ochotnik ma na każdej z kart napisać inną liczbę naturalną pomiędzy 1 a 100. Ochotnik zatrzymuje zieloną kartę, i oddaje pozostałe karty magikowi. Magik, który widział wszystkie pisane liczby, ustawia białe karty w jakiejś kolejności i przekazuje je asystentowi. Asystent po obejrzeniu kart ogłasza jaki numer został napisany na zielonej karcie.

Wyjaśnij jak ta sztuczka działa.


Ćwiczenie 4 [Entropia jako metryka]

Dla rozkładów X i Y definiujemy funkcję d(X,Y)=H(X|Y)+H(Y|X). Pokaż, że funkcja ta spełnia warunki metryki:

a) d(X,Y)\ge 0
b) d(X,Y)=d(Y,X)
c) d(X,Y)=0 \Leftrightarrow istnieje bijekcja między X a Y
d) d(X,Y)+d(Y,Z) \ge d(X,Z)

Zadania domowe

Zadanie 1 - Efektywne testy przesiewowe

Załóżmy, że mamy do przebadania pod kątem obecności jakiegoś wirusa N próbek krwi. Prawdopodobieństwo pozytywnego wyniku p dla każdej próbki jest niewielkie (np. p=0,01), a każdy test jest kosztowny. Zamiast badać każdą próbkę osobno, możemy badać zmieszane fragmenty próbek. Zakładamy wtedy, że wynik jest pozytywny jeśli choć jedna z wymieszanych próbek zawierała wirusa. Zakładamy też, że każdą próbkę możemy podzielić na wystarczająco wiele fragmentów. Ostatecznie musimy jednak dla każdej próbki wiedzieć bez wątpliwości czy zawiera wirusa, czy nie. O ile możemy zmniejszyć oczekiwaną liczbę testów do wykonania? Zaprojektuj efektywne badanie dla p=0,01 i N=300 i policz oczekiwaną liczbę testów.


Zadanie 2 - Optymalność kodu Huffmana

Udowodnij, że kod Huffmana dla źródeł binarnych ma optymalną długość. Zacznij od udowodnienia, że każde źródło ma kod optymalny, w którym dwa najdłuższe słowa kodowe są rodzeństwem (różnią się tylko ostatnim bitem). Uogólnij to rozumowanie na źródła o dowolnej ilości symboli i udowodnij optymalność kodu Huffmana w ogólnym przypadku.

Jeśli kod Huffmana jest optymalny, dlaczego używa się wielu różnych metod kompresji?