
Problem detekcji zakończenia (I) 

 



Plan wykładu 

 
Celem wykładu jest zapoznanie studenta z tematyką detekcji zakończenia. Wykład obejmie 
przedstawienie przykładów ilustrujących potrzebę problemy detekcji zakończenia w systemach 
rozproszonych (zakończenie sortowania rozproszonego oraz algorytm Matterna konstrukcji spójnego 
obrazu stanu globalnego), następnie różne definicje zakończenia (zarówno nieformalną jak i formalną, 
a także definicja klasyczna zakończenia), pojęcia zakończenia dynamicznego i statycznego i relacje 
między nimi,  zagadnienia związane z detekcją zakończenia w różnych modelach przetwarzania, 
takich jak model synchroniczny i dyfuzyjny. Student zapozna się również z algorytmami detekcji 
zakończenia Dijkstry, Feijena, van Gastarena, algorytmem Dijkstry-Scholtena oraz algorytmem Misry 
dla systemów asynchronicznych. 



Problem detekcji zakończenia: przykłady 

 
W celu ilustracji problemu detekcji zakończenia zostaną przedstawione dwa proste przykłady: problem 
sortowania rozproszonego oraz znany już z wcześniejszych wykładów algorytm Matterna konstrukcji 
spójnego obrazu stanu globalnego w środowisku z kanałami non-FIFO. 



Przykład 1 – sortowanie rozproszone 

 
Przykład 1 

Należy posortować zbiór liczb naturalnych. Zbiór ten jest podzielony między procesy a zadaniem 
każdego procesu jest uporządkowanie przypisanej mu części zbioru liczb naturalnych i wyznaczenie 
elementu minimalnego, który następnie jest wysyłany do lewych sąsiadów. Po otrzymaniu wiadomości 
z wartością minimalną, proces  wyznacza element maksymalny i wysyła go do prawego sąsiada. Kroki 
te są powtarzane dopóki zbiór nie zostanie uporządkowany. 



Sortowanie rozproszone: definicje 

 

Przyjmijmy, że zbiór X zostaje wstępnie podzielony na podzbiory Xi w taki sposób, że:  

X  =     Xi ,  

oraz 

∀i,j :: (1  i, j  n) ∧ (i≠j) :: (Xi ∩ Xj = ∅) ∧ (∀i :: 1  i  n :: Xi ≠ ∅) 

Niech: 

• vi  – liczba elementów zbioru Xi  

• mini  – minimalny element zbioru Xi  

• maxi  – maksymalny element zbioru Xi  

• Pi  – procesy tworzące przetwarzanie rozproszone o topologii łańcucha skojarzone ze zbiorami 
Xi. 

Pary  procesów  składowych  Pi,  Pi+1, 1  i  n-1,  połączone  są  kanałami dwukierunkowymi 



Sortowanie rozproszone – przykład 

 

Każdy z procesów Pi+1 ma za zadanie uporządkować (posortować) przypisany mu na wstępie zbiór X 
i+1 i wyznaczyć element mini+1.  

Następnie procesy wysyłają elementy mini+1 do swoich lewych sąsiadów i oczekują na odpowiedź 
zawierającą maxi. Po otrzymaniu wiadomości z  wartością mini+1, a przed wysłaniem odpowiedzi, 
proces Pi wyznacza nowy element maxi. 

W ogólności, nowo wyznaczony maxi może być równy otrzymanemu ostatnio mini+1. Następnie każdy 
z procesów wysyła odpowiedź ze swoim elementem maksymalnym do prawego sąsiada. Po 
otrzymaniu odpowiedzi, procesy znów sortują zbiory Xi  i jeśli w wyniku tego sortowania wartość mini+1 

różnić się będzie od poprzednio wysłanego elementu minimalnego, to proces wysyła ten nowy 
element mini+1 do lewego sąsiada. Cel sortowania rozproszonego zostaje osiągnięty, gdy 
uporządkowany zostanie każdy zbiór Xi , a ponadto dla każdego i:  1  i  n-1,  maxi < mini+1.  



Sortowanie rozproszone – przykład (2) 

 
Slajd przedstawia efekt posortowania przykładowego zbioru liczb za pomocą przedstawionego 
algorytmu. 



Problem zakończenia 

 
Problem jednak w tym, że każdy proces ma tylko wiedzę lokalną, dotyczącą jego lokalnego zbioru 
i częściowo zbiorów bezpośrednich sąsiadów. Na tej podstawie procesy nie mogą jednak wnioskować 
o zakończeniu całego przetwarzania. Potrzebny jest zatem dodatkowy mechanizm pozwalający 
stwierdzić, że globalne warunki zakończenia sortowania rozproszonego zostały spełnione. 



Przykład 2 – obraz stanu globalnego 

 
Przykład 2: Algorytm Matterna konstrukcji spójnego obrazu stanu globalnego w środowisku z kanałami 
nonFIFO.  

Ze względu na możliwe zmiany uporządkowania wiadomości w kanałach otrzymanie wiadomości 
koloru Red nie przesądzało o tym, że w kanałach nie ma już wcześniej wysłanych wiadomości koloru 
White. Ponieważ jednak zbiór otrzymanych przez proces koloru Red wiadomości White określa stan 
kanału w wyznaczanym obrazie stanu globalnego, niezbędne jest niezależne od procesu konstrukcji 
obrazu stanu globalnego sprawdzenie, czy w kanałach nie ma jeszcze wiadomości koloru White. 
Dopiero bowiem wówczas, gdy stwierdzimy, że wszystkie wiadomości koloru White zostały odebrane, 
wyznaczone stany kanałów odpowiadają spójnemu obrazowi stanu globalnego. 



Definicja nieformalna zakończenia 

 
Nieformalnie problem detekcji zakończenia przetwarzania rozproszonego polega na sprawdzeniu, czy 
wszystkie procesy przetwarzania są w stanie pasywnym oraz czy żadna wiadomość będąca w kanale 
(transmitowana lub dostępna) nie uaktywni któregokolwiek z tych procesów. Przez proces aktywny 
rozumiemy tutaj wykonujący kroki algorytmu; w przeciwnym wypadku uznajemy go za pasywny. 
Dokładne definicje zostały przedstawione na wcześniejszych wykładach. 

Przez zakończenie obliczeń rozproszonych mamy tutaj na myśli osiągnięcie pewnej końcowej 
konfiguracji, w której nie są już możliwe dalsze kroki algorytmu. 



Definicja formalna: Oznaczenia (1) 

 
W sformułowaniu formalnym tego problemu, podobnie jak w sformułowaniu problemu zakleszczenia, 
wykorzystamy następujące oznaczenia: 

• passivei  – zmienna logiczna (predykat) przyjmująca wartość True wtedy i tylko wtedy, gdy 
proces Pi jest pasywny 

• availablei  – tablica [1..n] zmiennych logicznych procesu Pi skojarzona z wiadomościami 
dostępnymi 

• availablei [j] – j-ty element tablicy availablei przyjmujący wartość True,  gdy dla Pi jest 
dostępna wiadomość wysłana przez Pj 



Definicja formalna: Oznaczenia (2) 

 
in-transiti – tablica [1..n] zmiennych logicznych procesu Pi skojarzona z wiadomościami 
transmitowanymi 

in-transiti[j] – j-ty element tablicy in-transiti przyjmujący wartość True, gdy wiadomość wysłana 
przez Pj do Pi należy do LT

j,i, a więc jest transmitowana i nie jest jeszcze dostępna 

Oprócz tego przyjmiemy oznaczenie dwóch zbiorów procesów AVi  oraz ITi , zdefiniowanych w 
następujący sposób: 

AVi = {Pj : availablei[j] = True}  
ITi = {Pj : intransiti[j] = True} 



Zakończenie dynamiczne 

 

Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia dynamicznego, jeżeli żaden 
proces składowy przetwarzania rozproszonego nie będzie już nigdy uaktywniony. Stan ten będzie 
utrzymywany pomimo, że pewne wiadomości są wciąż transmitowane, a pewne wiadomości są już 
dostępne. 



Zakończenie dynamiczne: definicja formalna 

 
Przedstawioną definicję można bardziej formalnie zapisać z wykorzystaniem przedstawionych 
wcześniej oznaczeń w następujący sposób: przetwarzanie rozproszone Π jest w danej chwili w stanie 
zakończenia dynamicznego, gdy spełniony jest predykat:  

Dterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ ¬ activatei(AVi  ∪ ITi )) 

 

Predykat ten oznacza, że żaden proces składowy przetwarzania rozproszonego nie będzie już nigdy 
uaktywniony. Stan ten będzie utrzymywany pomimo, że pewne wiadomości są wciąż transmitowane 
(ITi≠∅), a pewne wiadomości są już dostępne (AVi ≠ ∅). 

Takie sformułowanie definiującego stan zakończenia jest interesujące z praktycznego punktu 
widzenia, gdyż pozwala stwierdzić zakończenie przetwarzania nawet przed dotarciem wszystkich 
wiadomości do procesów (węzłów) docelowych. Definicja zakończenia dynamicznego uwzględnia 
rzeczywistą aktywność procesów wyrażoną przez zmienną passivei oraz potencjalną aktywność 
wyrażoną przez predykat activatei(AVi∪ITi).  

Predykat Dterm(P) jest predykatem stabilnym.  



Zakończenie statyczne 

 
Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia statycznego, jeżeli wszystkie 
procesy są pasywne, wszystkie wiadomości znajdujące się w kanałach są dostępne i dla żadnego 
procesu nie jest spełniony warunek uaktywnienia. 



Zakończenie statyczne: definicja formalna 

 

Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia statycznego, gdy spełniony jest 
predykat: 

Sterm(P) ≡ ∀Pi :: Pi∈P :: (passivei ∧ (ITi = ∅) ∧ ¬activatei(AVi )) 

Oznaczenia w powyższym wzorze wprost odpowiadają wcześniej podanej definicji: wszystkie procesy 
są pasywne (passivei = True), wszystkie wiadomości znajdujące się w kanałach są dostępne (ITi = ∅) 
i dla żadnego procesu nie jest spełniony warunek uaktywnienia (activatei(AVi) =False). Definicja ta 
uwzględnia zatem zarówno stany procesów jak i stany kanałów. 

Porównując z Dterm(P), predykat Sterm(P) odpowiada detekcji nieco późniejszej, gdyż dodatkowo 

wymaga się, by wiadomości nie były już transmitowane (ITi = ∅). 



Zakończenie dynamiczne ↔ statyczne 

 

Niech ϑ ϑ’ oznacza, że zajście predykatu ϑ prowadzi w skończonym choć nieprzewidzianym czasie 

do zajścia predykatu ϑ’.  

Twierdzenie 9.1 

Dterm(P)  Sterm(P) 

Dowód  

W chwili τ, gdy Dterm(P) = True, wszystkie procesy Pi są pasywne, zachodzi  

¬activatei(AVi ∪ ITi )[τ], a część wiadomości może znajdować się w kanałach. Jednakże, wszystkie 
wiadomości transmitowane są brane pod uwagę, a ich dotarcie do węzłów docelowych i w 
konsekwencji ich dostępność, jest uwzględniona w wartości predykatu ¬activatei(AVi ∪ ITi ). Wobec 
niezawodności kanałów, wiadomości transmitowane osiągną węzły docelowe po skończonym choć 
nieprzewidywalnym czasie, w pewnym momencie τ ‘ > τ.  Wówczas ITi [τ ‘] = ∅. Wobec stałej 

pasywności wszystkich procesów od chwili τ, w każdej chwili τ ‘’  τ ‘, AVi [τ ‘’] = AVi[τ] ∪ ITi [τ]  

oraz  ITi [τ ‘’] = ∅.   
Stąd otrzymujemy:   

¬activatei (AVi [τ’’]) = True,   ITi [τ ‘’] = ∅ 

Predykat Sterm(P) przyjmuje zatem wartość True .   

Udowodniliśmy więc, że opóźnienie między momentem zajścia predykatu Dterm(P) a momentem 
zajścia predykatu Sterm(P) jest skończone lecz nieprzewidywalne. Wybór między jedną a drugą 
definicją zakończenia zależy oczywiście od użytkownika. Łatwo przewidzieć, że detekcja stanu 
opisanego predykatem Dterm(P) będzie trudniejsza, a więc w ogólności bardziej kosztowna. Z drugiej 
jednak strony, zajście Dterm(P) może pozwolić, na przykład, na uznanie wyników przetwarzania za 



ostateczne (w konsekwencji możliwe do dalszego wykorzystania) nawet, gdy pewne wiadomości są 
jeszcze transmitowane. 



Klasyczna definicja zakończenia 

 
W klasycznej definicji zakończenia przyjmowano, że przetwarzanie rozproszone jest w stanie 
zakończenia, jeżeli w danej chwili wszystkie procesy są pasywne i wszystkie kanały są puste, a więc 
gdy zachodzi następujący predykat:  

 
  

Cterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ (AVi = ∅). 



Klasyczna definicja zakończenia a zakończenie statyczne 

 

Rozważmy teraz relację między Sterm(P) a  Cterm(P).  

Twierdzenie 9.2 

Jeżeli procesy są uaktywnione w sposób natychmiastowy w chwili zajścia predykatu activatei(AVi) 
przez każdą dostępną wiadomość, to przetwarzanie rozproszone obejmujące zbiór procesów P jest 
statycznie zakończone wtedy i tylko wtedy, gdy zachodzi predykat Cterm(P).  

Dowód 
Zgodnie z założeniem, procesy stają się aktywne natychmiast w chwili zajścia predykatu 
activatei(AVi). W konsekwencji passivei jest równe True tylko wówczas, gdy ¬activatei(AVi). Stąd, 
w wypadku procesów uaktywnianych każdą wiadomością: 

passivei ∧ ¬activatei(AVi)  ≡   passivei ∧ (AVi = ∅). 

W konsekwencji:  

 
Sterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ ¬activatei(AVi ))  

 ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ (AVi = ∅) ≡ Cterm(P) .   

 

Warto zauważyć silne związki między pojęciami zakończenia i zakleszczenia. W istocie, zakończenie 
jest szczególnym wypadkiem zakleszczenia, w którym zakleszczone są wszystkie procesy 
przetwarzania rozproszonego. 



Problem detekcji zakończenia 

 
Problem detekcji zakończenia przetwarzania rozproszonego obejmującego zbiór procesów, 
sprowadza się do sprawdzenia czy przetwarzanie osiągnęło określony stan zakończenia, a więc – czy 
zachodzi odpowiedni predykat:  Dterm(P), Sterm(P) lub  Cterm(P). 

Można dowieść, że jeżeli w czasie przetwarzania aplikacyjnego wymienianych jest m wiadomości, to 
niemożliwa jest konstrukcja algorytmu detekcji zakończenia o złożoności komunikacyjnej mniejszej 
niż m. 



Model przetwarzania synchronicznego 

 
Na początku rozważony zostanie problem detekcji zakończenia w modelu przetwarzania 
synchronicznego. W modelu tym przyjmuje się, że transmisje są natychmiastowe. Stąd kanały mogą 
być uznane za puste przez cały czas i problem zakończenia sprowadza się do sprawdzenia czy 
wszystkie procesy są  jednocześnie pasywne.  

 
Stan zakończenia opisuje więc następujący predykat: 

Iterm(P) ≡ ∀Pi :: Pi ∈ P :: passivei 

 



Detekcja zakończenia dla synchronicznego modelu przetwarzania 

 
Zostanie obecnie omówiony algorytm autorstwa Dijkstry, Feijen oraz van Gasterena 
detekcji zakończenia dla modelu przetwarzania synchronicznego. Wykorzystuje on wykorzystuje 
koncepcję ciągu cykli detekcyjnych i zakłada, że wszystkie monitory procesów aplikacyjnych 
połączone są w logiczny pierścień i obserwują stany procesów aplikacyjnych.  

Monitorom (procesom) przypisany jest kolor White albo Black. 

Monitory przesyłają wzdłuż pierścienia wiadomość kontrolną – znacznik typu TOKEN, który również 
może mieć kolor White albo Black.  

Początkowo monitory mają kolor White, a zmieniają kolor na Black, gdy odpowiadający im proces 
aplikacyjny wyśle wiadomości do procesu o indeksie większym. 

Monitor inicjujący detekcję zakończenia Qα= Q1 wysyła znacznik koloru White do swego następnika 
w pierścieniu Qn jeżeli obserwowany przez niego proces aplikacyjny  jest pasywny.  

Każdy kolejny monitor Qi odbierający znacznik czeka aż obserwowany przez niego proces stanie się 
pasywny i wówczas wysyła znacznik o kolorze zgodnym z kolorem monitora.  

Po wysłaniu znacznika monitorowi przypisywany jest kolor White. 

 
Algorytm kończy się, gdy znacznik koloru White dotrze do inicjatora. Dla uproszczenia prezentacji, 
w algorytmie wykorzystano funkcje: 

 
 succ(i) = (i) modn + 1  

 pred(i) = (i+n−2) modn + 1 



Przykład detekcji zakończenia runda zakończona niepowodzeniem 

 

 
Na przedstawionym slajdzie inicjator (proces P1) przesyła znacznik koloru White do swojego 
następnika, P6. Następnie znacznik ten jest przesyłany w pierścieniu do kolejnego procesu, P5. Oba te 
procesy posiadają przypisany kolor White, a więc był pasywny w bieżącej rundzie detekcji. Znacznik 
więc nie zmienia koloru. Tymczasem proces P4 wysyła wiadomość aplikacyjną do procesu P6, co 
powoduje zmianę jego koloru na Black. Kiedy więc znacznik dociera do P4 zmienia kolor również na 
Black. Po przejściu całego pierścienia znacznik powraca do inicjatora. Ponieważ znacznik przyjął kolor 
Black, detekcja zakończenia nie została uwieńczona powodzeniem. 



Przykład detekcji zakończenia runda zakończona sukcesem  

 

 
Monitor zmienia więc kolor na White  i ponownie wysyła znacznik o kolorze White do swojego 
następnika w pierścieniu. Sytuacja jest podobna jak poprzednio – znacznik jest przesyłany między 
procesami od inicjatora, P1, do jego następnika P6, dalej do P5. W tym  momencie proces P4 wysyła 
wiadomość do procesu P2 – nie powoduje to jednak zmiany koloru przypisanego do procesu, gdyż 
indeks adresata wiadomości jest mniejszy niż indeks nadawcy. Kiedy więc znacznik dociera do 
procesu P4, jego kolor się nie zmienia i dalej jest przesyłany również z przypisanym kolorem White. 



Ostatecznie znacznik dociera do inicjatora detekcji, a ponieważ jego kolor pozostaje White, inicjator 
może stwierdzić wykrycie zakończenia. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (1) 

 
Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości 
aplikacyjne. Drugi typ, TOKEN, to znacznik posiadający pole colour oznaczające kolor znacznika. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (2) 

 
Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane 
w postaci pcktOut. Wiadomość tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresenti  określa 
obecność znacznika w procesie Pi. Zmienna procColouri służy do określenia koloru monitora 
(procesu). Zmienna terminationDetectedi  zostaje ustawiona na True jeżeli wykryte zostało zakończenie. 
Początkowo monitory mają kolor White. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (3) 

 

Procedura INITPROC wywoływana jest przez monitor Qα (α = 1) podczas inicjacji kolejnej rundy. 
Powoduje ona przesłanie następnikowi w pierścieniu znacznika o kolorze White oraz przypisanie 
wartości White zmiennej procColourα. 

 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (4) 

 

Monitor inicjujący detekcję zakończenia Qα= Q1 wysyła znacznik koloru White (wywołując procedurę 
INITPROC) do swego następnika w pierścieniu Qn jeżeli obserwowany przez niego proces aplikacyjny 
 jest pasywny.  

Monitor Qi zmienia kolor na Black, jeżeli obserwowany przez niego proces wysyła wiadomość 
aplikacyjną do procesu o wyższym indeksie. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (5) 

 
Algorytm nie przewiduje żadnych specjalnych akcji dla zdarzenia odbioru wiadomości aplikacyjnej. 
Jest ona po prostu dostarczana do skojarzonego z monitorem procesu aplikacyjnego. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (6) 

 
Odebranie znacznika (tokena) przez proces Qi wysłanego przez jego następnika w pierścieniu Qsucc(i), 
powoduje ustawienie zmiennej tokenPresenti na wartość True. Znacznik jest zatrzymywany w monitorze 
Qi  do czasu aż obserwowany przez niego proces aplikacyjny Pi stanie się pasywny.  

Jeżeli Qi =Qα i kolor zarówno obserwowanego procesu jak i znacznika jest White, inicjator kończy 
algorytm decydując o wykryciu zakończenia. Jeżeli Qi =Qα ale albo kolor procesu, albo kolor znacznika 
równy jest Black, inicjator rozpoczyna kolejną rundę algorytmu. 



Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (7) 

 
Monitory Qi ≠Qα przesyła dalej token o kolorze takim samym jak kolor obserwowanego procesu 
aplikacyjnego, zmienia następnie kolor procesu na White oraz zmienia wartość tokenPresenti na 
wartość False.  



Model przetwarzania dyfuzyjnego 

 
Przetwarzanie dyfuzyjne (ang. diffusing computation) jest specyficznym przetwarzaniem 
rozproszonym, w którym wyróżnia się: 

• inicjatora (środowisko) – może w dowolnej chwili rozpocząć przetwarzanie dyfuzyjne 
wysyłając wiadomość aplikacyjną do jednego lub wielu procesów kooperujących (zakłada się, 
że inicjacja taka zachodzi tylko raz), 

• hierarchię kooperujących procesów. 

Każdy proces po uzyskaniu pierwszej wiadomości aplikacyjnej, nadawcę tej wiadomości traktuje jako 
proces angażujący (ang. engager) i realizuje dalsze przetwarzanie wysyłając wiadomości do innych 
procesów, w tym ewentualnie do inicjatora. 



Założenia dodatkowe 

 
Dla ułatwienia opisu przedstawianych algorytmów, przyjmiemy pewne dodatkowe upraszczające 
założenia: 

• Proces aktywny staje się procesem pasywnym tylko w wyniku pewnego zdarzenia 
wewnętrznego 

• Proces zawsze staje się aktywny po otrzymaniu wiadomości 

• Proces pasywny może stać się aktywny tylko w wyniku otrzymaniu wiadomości 

Innymi słowy, proces aplikacyjny może w dowolnej chwili stać się pasywny i oczekiwać na 
uaktywniającą go wiadomość aplikacyjną od dowolnego innego procesu. Warunek uaktywnienia 
procesu definiuje zatem model żądań OR i zbiór warunkujący Di = P \ { Pi }.  

 
 

 



Koncepcja algorytmu detekcji zakończenia (Dijkstra-Scholten ’80) 

 
Monitory procesów aplikacyjnych przesyłają wiadomości kontrolne typu SIGNAL jako pewnego 
rodzaju odpowiedzi na wiadomości aplikacyjne.  

Monitor pasywnego inicjatora może stwierdzić zakończenie całego przetwarzania aplikacyjnego, gdy 
odbierze wiadomości SIGNAL od wszystkich monitorów związanych z procesami uaktywnionymi przez 
inicjatora.  



Graf przetwarzania dyfuzyjnego 

 
Inicjatorem przetwarzania dyfuzyjnego w przestawionym przykładzie jest P1. Staje się on procesem 
angażującym dla procesów P2, P3  oraz P4. Każdy z nich z kolei sam angażuje kolejne procesy. 
Procesy tworzą więc drzewo, a wiadomości są przesyłane od inicjatora (korzenia drzewa) i niżej. 



Graf przetwarzania dyfuzyjnego (2) 

 
Procesy odsyłają specjalne wiadomości, poczynając od liści drzewa. Każdy proces – węzeł drzewa 
przesyła wiadomość do swojego procesu angażującego, jeśli zebrał już wiadomości od wszystkich 
procesów potomnych. W momencie, w którym inicjator zbierze wszystkie wiadomości od swoich 
procesów potomnych, może uznać, że zostało wykryte zakończenie przetwarzania. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (1) 

 
Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości 
aplikacyjne. Drugi typ, SIGNAL to specjalna wiadomość kontrolna przesyłana między monitorami. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (2) 

 
Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane 
w postaci pcktOut. Zmienna engageri  zawiera identyfikator monitora, którego proces uaktywnił Pi.  Z 
kolei zbiór notEngageri oznacza zbiór monitorów różnych od monitora angażującego, od których 
odebrano pakiet. Zmienne recvNoi oraz sentNoi  oznaczają, odpowiednio, liczbę wiadomości 
odebranych bądź wysłanych przez Pi  a nie potwierdzonych jeszcze przez Qi wiadomością typu 
SIGNAL. Zmienna terminationDetectedi  zostaje ustawiona na True jeżeli wykryte zostało zakończenie.  



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (3) 

 

Przetwarzanie dyfuzyjne jest inicjowane przez proces Pα który wysyła wiadomości do swoich 

bezpośrednich potomków w hierarchii należących do zbioru Pα
R. Zmienna sentNoα  zawiera liczbę tych 

wysłanych wiadomości. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (4) 

 
Zdarzenie wysłania wiadomości typu SIGNAL może zajść dla monitora Qi  dla tylko wtedy, gdy 
(recvNoi > 1)  ∨ (recvNoi = 1 ∧ sentNoi = 1 ∧  passivei). Monitor Qi wysyłając wiadomość typu SIGNAL 
sprawdza, czy odebrał już wiadomości od wszystkich procesów poza angażującym (recvNoi = 1), nie 
wysłał żadnej nie potwierdzonej wiadomości (sentNoi = 0 ) a skojarzony zeń proces jest pasywny. W 
takim wypadku wysyła procesowi angażującemu sygnał. W przeciwnym wypadku wysyła wiadomość 
kontrolną typu SIGNAL do wszystkich monitorów procesów od których otrzymał jakąś wiadomość i 
jeszcze jej nie potwierdził do tej pory wiadomością SIGNAL, poza monitorem procesu angażującego, i 
usuwa te procesy z zbioru notEngageri. Wreszcie dekrementuje zmienną recvNoi. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (5) 

 
Monitor Qi  odbierając sygnał dekrementuje zmienną sentNoi (gdyż zmienna ta oznacza ilość nie 
potwierdzonych wysłanych wiadomości). Jeżeli  

Qi = Qα ∧ sentNoi = 0, to w momencie w którym skojarzony proces aplikacyjny Pα stanie się pasywny, 
monitor decyduje o wykryciu zakończenia. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (6) 

 
 

Zdarzenie wysłania wiadomości aplikacyjnej  może zajść dla monitora Qi  dla i ≠ α tylko wtedy, gdy 
recvNoi > 0 ∧ ¬ passivei. Wysyłając dowolną wiadomość aplikacyjną monitor inkrementuje licznik nie 
potwierdzonych wiadomości sentNoi. 



Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania  (7) 

 
 

W przypadku otrzymania wiadomości, jeżeli jest to pierwsza otrzymana wiadomość (recvNoi = 0) to 
monitor Qi  uznaje nadawcę za proces angażujący, a w przeciwnym wypadku dodaje go do zbioru 
notEngageri. Następnie inkrementuje licznik recvNoi i dostarcza wiadomość procesowi aplikacyjnemu. 



Twierdzenie 9.3 

 
Twierdzenie 9.3 

Jeżeli przetwarzanie dyfuzyjne uległo zakończeniu, fakt ten ulega wykryciu przez algorytm Dijkstry-
Scholtena. 

Dowód 
Jeżeli przetwarzanie dyfuzyjne ulega zakończeniu, oznacza to, że nie ma żadnego aktywnego 
procesu ani nie ma żadnych wiadomości ani sygnałów w kanałach komunikacyjnych. Oznacza to 
także, że żaden proces nie może wysyłać żadnych wiadomości ani potwierdzeń. W związku z tym, 
można wywnioskować, że jeżeli przetwarzanie ulegnie zakończeniu, to w każdym procesie Pi (za 
wyjątkiem procesu-inicjatora) zachodzi: recvNoi ≥ 0 ∧ sentNoi ≥ 0 oraz recvNoi > 1 ∨ (recvNoi  = 1 ∧ 
sentNoi =  0 ). Spostrzeżenie to można uprościć do postaci recvNoi  = 0 ∨ (recvNoi  = 1 ∧ sentNoi >  0 ).  

Z kolei dla procesu inicjującego oczywiste jest, że zachodzi recvNoi = 0 ∧ sentNoi ≥ 0 ).  

Dalej można wywnioskować, że w stanie zakończenia przetwarzania ∀Pi: recvNoi ≤ sentNoi . Ponieważ 
żadne wiadomości ani sygnały nie są przesyłane, więc suma wszystkich recvNoi  wszystkich procesów 
musi być równa sumie wszystkich sentNoi. Z tych dwóch wniosków oraz z spostrzeżenia tyczącego 
wartości zmiennych u inicjatora, wynika, że w wyniku zakończenia przetwarzania w procesie inicjatora 
zachodzi recvNoi  =  sentNoi = 0, a ponieważ proces ten jest pasywny, więc zostaną spełnione warunki 
wykrycia zakończenia. 



Detekcja zakończenia dla systemów asynchronicznych  (Misra ’83) 

 
Dla systemów asynchronicznych można wykorzystać w celu detekcji zakończenia algorytm (Misra’83), 
który nie czyni żadnych założeń co do topologii przetwarzania i czasu przesyłania. Algorytm ten 
wymaga natomiast, by żadne nie wiadomości nie były gubione podczas transmisji (niezawodność 
komunikacji) oraz by kanały komunikacyjne zachowywały porządek wysyłania wiadomości (kanały 
FIFO). 

Algorytm ten, podobnie jak przedstawiony wcześniej algorytm dla modelu synchronicznego (Dijkstra, 
Feijen, van Gasteren) używa znacznika, oraz kolorowanie procesów.  Dla ułatwienia analizy, można 
przyjąć, że wszystkie topologia przetwarzania to graf w pełni połączony, jednakże algorytm łatwo 
można dostosować do dowolnej topologii, co zostanie pokazane dalej. 

 



Detekcja zakończenia dla systemów asynchronicznych: algorytm (1) 

 
Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości 
aplikacyjne. Drugi typ, TOKEN to specjalna wiadomość kontrolna, znacznik, przesyłana między 
monitorami, zawierające pole nb oznaczające liczbę procesów odwiedzonych przez znacznik, które 
były pasywne. 



Algorytm detekcji zakończenia dla systemów asynchronicznych (2) 

 
Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane 
w postaci pcktOut. Wiadomość tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresenti  określa 
obecność znacznika w procesie Pi. Zmienna colouri służy do określenia koloru monitora (procesu). 
Zmienna terminationDetectedi  zostaje ustawiona na True jeżeli wykryte zostało zakończenie. 
Początkowo monitory mają kolor White.  

Dwie zmienne związane są z topologią przetwarzania. Zmienna succi zawiera następnika procesu Pi w 
cyklu obejmującym wszystkie kanały komunikacyjne. Związane jest to z wymaganiem, by znacznik 
typu TOKEN odwiedził wszystkie kanały łączące procesy. C oznacza zbiór wszystkich kanałów 
tworzących cykl obejmujący wszystkie kanały komunikacyjne.  



Algorytm detekcji zakończenia dla systemów asynchronicznych (3) 

 
Zaczynając detekcję, proces wysyła znacznik do swojego następnika w cyklu, przypisując polu nb tego 
znacznika wartość 0. 



Algorytm detekcji zakończenia dla systemów asynchronicznych (4) 

 
Otrzymanie wiadomości aplikacyjnej przez monitor Qi powoduje, poza uaktywnieniem procesu Pi i 
dostarczeniem wiadomości, zmianę koloru procesu na Black. 



Algorytm detekcji zakończenia dla systemów asynchronicznych (5) 

 
Po otrzymaniu znacznika, monitor Qi przesyła go dalej w momencie, gdy obserwowany przez niego 
proces staje się pasywny. Jeżeli kolor procesu równa się Black, pole nb znacznika jest zerowane. W 
przeciwnym razie jest ono inkrementowane. Kolor procesu następnie ustawiany jest na White oraz 
monitor przesyła znacznik do swojego następnika w cyklu. Oznacza to, że każdy proces musi 
pozostać pasywny pomiędzy wszystkimi odwiedzinami znacznika, a znacznik musi co najmniej dwa 
razy przejść cykl. 



Detekcja zakończenia dla systemów asynchronicznych: algorytm (6) 

 
Inicjator Pα  przetwarzania, po otrzymaniu znacznika, jeżeli kolor procesu Pα posiada wartość White 
oraz jeżeli wartość zapisana w polu nb otrzymanego znacznika równa jest liczbie kanałów 
komunikacyjnych (liczbie krawędzi grafu topologii przetwarzania), decyduje o wykryciu zakończenia. 
W przeciwnym wypadku przesyła znacznik dalej, być może zerując wartość pola nb w podobny 
sposób, jak każdy inny proces. 

Warte podkreślenia jest, że w ogólności każdy monitor, a nie tylko inicjator może dokonać decyzji o 
wykryciu detekcji zakończenia obserwując pole nb oraz kolor obserwowanego przez siebie procesu. 



Cechy algorytmu Misra’83 

 
Aby dostosować przedstawiony algorytm do dowolnej topologii, wystarczy ustawić odpowiednio 
wartości zmiennej succi – wystarczy podzielić graf topologii przetwarzania na zbiór cykli o 
maksymalnej długości i odwiedzać je po kolei. Wiele monitorów naraz może dokonywać detekcji 
zakończenia – w takim wypadku wystarczy dodać do znacznika pole wskazujące na inicjatora detekcji. 
Dużą wadą algorytmu jest wymaganie, by cykle obejmujące kanały komunikacyjne były znane z góry. 

Należy tutaj podkreślić, że w algorytmie dowolny monitor może decydować o wykryciu zakończenia i w 
gruncie rzeczy żaden z nich nie jest wyróżniony. 




