
Problem detekcji zakończenia (I)

Plan wykładu

Celem wykładu jest zapoznanie studenta z tematyką detekcji zakończenia. Wykład obejmie
przedstawienie przykładów ilustrujących potrzebę problemy detekcji zakończenia w systemach
rozproszonych (zakończenie sortowania rozproszonego oraz algorytm Matterna konstrukcji spójnego
obrazu stanu globalnego), następnie różne definicje zakończenia (zarówno nieformalną jak i formalną,
a także definicja klasyczna zakończenia), pojęcia zakończenia dynamicznego i statycznego i relacje
między nimi, zagadnienia związane z detekcją zakończenia w różnych modelach przetwarzania,
takich jak model synchroniczny i dyfuzyjny. Student zapozna się również z algorytmami detekcji
zakończenia Dijkstry, Feijena, van Gastarena, algorytmem Dijkstry-Scholtena oraz algorytmem Misry
dla systemów asynchronicznych.

Problem detekcji zakończenia: przykłady

W celu ilustracji problemu detekcji zakończenia zostaną przedstawione dwa proste przykłady: problem
sortowania rozproszonego oraz znany już z wcześniejszych wykładów algorytm Matterna konstrukcji
spójnego obrazu stanu globalnego w środowisku z kanałami non-FIFO.

Przykład 1 – sortowanie rozproszone

Przykład 1

Należy posortować zbiór liczb naturalnych. Zbiór ten jest podzielony między procesy a zadaniem
każdego procesu jest uporządkowanie przypisanej mu części zbioru liczb naturalnych i wyznaczenie
elementu minimalnego, który następnie jest wysyłany do lewych sąsiadów. Po otrzymaniu wiadomości
z wartością minimalną, proces wyznacza element maksymalny i wysyła go do prawego sąsiada. Kroki
te są powtarzane dopóki zbiór nie zostanie uporządkowany.

Sortowanie rozproszone: definicje

Przyjmijmy, że zbiór X zostaje wstępnie podzielony na podzbiory Xi w taki sposób, że:

X = Xi ,

oraz

∀i,j :: (1 i, j n) ∧ (i≠j) :: (Xi ∩ Xj = ∅) ∧ (∀i :: 1 i n :: Xi ≠ ∅)

Niech:

• vi – liczba elementów zbioru Xi

• mini – minimalny element zbioru Xi

• maxi – maksymalny element zbioru Xi

• Pi – procesy tworzące przetwarzanie rozproszone o topologii łańcucha skojarzone ze zbiorami
Xi.

Pary procesów składowych Pi, Pi+1, 1 i n-1, połączone są kanałami dwukierunkowymi

Sortowanie rozproszone – przykład

Każdy z procesów Pi+1 ma za zadanie uporządkować (posortować) przypisany mu na wstępie zbiór X
i+1 i wyznaczyć element mini+1.

Następnie procesy wysyłają elementy mini+1 do swoich lewych sąsiadów i oczekują na odpowiedź
zawierającą maxi. Po otrzymaniu wiadomości z wartością mini+1, a przed wysłaniem odpowiedzi,
proces Pi wyznacza nowy element maxi.

W ogólności, nowo wyznaczony maxi może być równy otrzymanemu ostatnio mini+1. Następnie każdy
z procesów wysyła odpowiedź ze swoim elementem maksymalnym do prawego sąsiada. Po
otrzymaniu odpowiedzi, procesy znów sortują zbiory Xi i jeśli w wyniku tego sortowania wartość mini+1

różnić się będzie od poprzednio wysłanego elementu minimalnego, to proces wysyła ten nowy
element mini+1 do lewego sąsiada. Cel sortowania rozproszonego zostaje osiągnięty, gdy
uporządkowany zostanie każdy zbiór Xi , a ponadto dla każdego i: 1 i n-1, maxi < mini+1.

Sortowanie rozproszone – przykład (2)

Slajd przedstawia efekt posortowania przykładowego zbioru liczb za pomocą przedstawionego
algorytmu.

Problem zakończenia

Problem jednak w tym, że każdy proces ma tylko wiedzę lokalną, dotyczącą jego lokalnego zbioru
i częściowo zbiorów bezpośrednich sąsiadów. Na tej podstawie procesy nie mogą jednak wnioskować
o zakończeniu całego przetwarzania. Potrzebny jest zatem dodatkowy mechanizm pozwalający
stwierdzić, że globalne warunki zakończenia sortowania rozproszonego zostały spełnione.

Przykład 2 – obraz stanu globalnego

Przykład 2: Algorytm Matterna konstrukcji spójnego obrazu stanu globalnego w środowisku z kanałami
nonFIFO.

Ze względu na możliwe zmiany uporządkowania wiadomości w kanałach otrzymanie wiadomości
koloru Red nie przesądzało o tym, że w kanałach nie ma już wcześniej wysłanych wiadomości koloru
White. Ponieważ jednak zbiór otrzymanych przez proces koloru Red wiadomości White określa stan
kanału w wyznaczanym obrazie stanu globalnego, niezbędne jest niezależne od procesu konstrukcji
obrazu stanu globalnego sprawdzenie, czy w kanałach nie ma jeszcze wiadomości koloru White.
Dopiero bowiem wówczas, gdy stwierdzimy, że wszystkie wiadomości koloru White zostały odebrane,
wyznaczone stany kanałów odpowiadają spójnemu obrazowi stanu globalnego.

Definicja nieformalna zakończenia

Nieformalnie problem detekcji zakończenia przetwarzania rozproszonego polega na sprawdzeniu, czy
wszystkie procesy przetwarzania są w stanie pasywnym oraz czy żadna wiadomość będąca w kanale
(transmitowana lub dostępna) nie uaktywni któregokolwiek z tych procesów. Przez proces aktywny
rozumiemy tutaj wykonujący kroki algorytmu; w przeciwnym wypadku uznajemy go za pasywny.
Dokładne definicje zostały przedstawione na wcześniejszych wykładach.

Przez zakończenie obliczeń rozproszonych mamy tutaj na myśli osiągnięcie pewnej końcowej
konfiguracji, w której nie są już możliwe dalsze kroki algorytmu.

Definicja formalna: Oznaczenia (1)

W sformułowaniu formalnym tego problemu, podobnie jak w sformułowaniu problemu zakleszczenia,
wykorzystamy następujące oznaczenia:

• passivei – zmienna logiczna (predykat) przyjmująca wartość True wtedy i tylko wtedy, gdy
proces Pi jest pasywny

• availablei – tablica [1..n] zmiennych logicznych procesu Pi skojarzona z wiadomościami
dostępnymi

• availablei [j] – j-ty element tablicy availablei przyjmujący wartość True, gdy dla Pi jest
dostępna wiadomość wysłana przez Pj

Definicja formalna: Oznaczenia (2)

in-transiti – tablica [1..n] zmiennych logicznych procesu Pi skojarzona z wiadomościami
transmitowanymi

in-transiti[j] – j-ty element tablicy in-transiti przyjmujący wartość True, gdy wiadomość wysłana
przez Pj do Pi należy do LT

j,i, a więc jest transmitowana i nie jest jeszcze dostępna

Oprócz tego przyjmiemy oznaczenie dwóch zbiorów procesów AVi oraz ITi , zdefiniowanych w
następujący sposób:

AVi = {Pj : availablei[j] = True}
ITi = {Pj : intransiti[j] = True}

Zakończenie dynamiczne

Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia dynamicznego, jeżeli żaden
proces składowy przetwarzania rozproszonego nie będzie już nigdy uaktywniony. Stan ten będzie
utrzymywany pomimo, że pewne wiadomości są wciąż transmitowane, a pewne wiadomości są już
dostępne.

Zakończenie dynamiczne: definicja formalna

Przedstawioną definicję można bardziej formalnie zapisać z wykorzystaniem przedstawionych
wcześniej oznaczeń w następujący sposób: przetwarzanie rozproszone Π jest w danej chwili w stanie
zakończenia dynamicznego, gdy spełniony jest predykat:

Dterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ ¬ activatei(AVi ∪ ITi))

Predykat ten oznacza, że żaden proces składowy przetwarzania rozproszonego nie będzie już nigdy
uaktywniony. Stan ten będzie utrzymywany pomimo, że pewne wiadomości są wciąż transmitowane
(ITi≠∅), a pewne wiadomości są już dostępne (AVi ≠ ∅).

Takie sformułowanie definiującego stan zakończenia jest interesujące z praktycznego punktu
widzenia, gdyż pozwala stwierdzić zakończenie przetwarzania nawet przed dotarciem wszystkich
wiadomości do procesów (węzłów) docelowych. Definicja zakończenia dynamicznego uwzględnia
rzeczywistą aktywność procesów wyrażoną przez zmienną passivei oraz potencjalną aktywność
wyrażoną przez predykat activatei(AVi∪ITi).

Predykat Dterm(P) jest predykatem stabilnym.

Zakończenie statyczne

Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia statycznego, jeżeli wszystkie
procesy są pasywne, wszystkie wiadomości znajdujące się w kanałach są dostępne i dla żadnego
procesu nie jest spełniony warunek uaktywnienia.

Zakończenie statyczne: definicja formalna

Przetwarzanie rozproszone Π jest w danej chwili w stanie zakończenia statycznego, gdy spełniony jest
predykat:

Sterm(P) ≡ ∀Pi :: Pi∈P :: (passivei ∧ (ITi = ∅) ∧ ¬activatei(AVi))

Oznaczenia w powyższym wzorze wprost odpowiadają wcześniej podanej definicji: wszystkie procesy
są pasywne (passivei = True), wszystkie wiadomości znajdujące się w kanałach są dostępne (ITi = ∅)
i dla żadnego procesu nie jest spełniony warunek uaktywnienia (activatei(AVi) =False). Definicja ta
uwzględnia zatem zarówno stany procesów jak i stany kanałów.

Porównując z Dterm(P), predykat Sterm(P) odpowiada detekcji nieco późniejszej, gdyż dodatkowo

wymaga się, by wiadomości nie były już transmitowane (ITi = ∅).

Zakończenie dynamiczne ↔ statyczne

Niech ϑ ϑ’ oznacza, że zajście predykatu ϑ prowadzi w skończonym choć nieprzewidzianym czasie

do zajścia predykatu ϑ’.

Twierdzenie 9.1

Dterm(P) Sterm(P)

Dowód

W chwili τ, gdy Dterm(P) = True, wszystkie procesy Pi są pasywne, zachodzi

¬activatei(AVi ∪ ITi)[τ], a część wiadomości może znajdować się w kanałach. Jednakże, wszystkie
wiadomości transmitowane są brane pod uwagę, a ich dotarcie do węzłów docelowych i w
konsekwencji ich dostępność, jest uwzględniona w wartości predykatu ¬activatei(AVi ∪ ITi). Wobec
niezawodności kanałów, wiadomości transmitowane osiągną węzły docelowe po skończonym choć
nieprzewidywalnym czasie, w pewnym momencie τ ‘ > τ. Wówczas ITi [τ ‘] = ∅. Wobec stałej

pasywności wszystkich procesów od chwili τ, w każdej chwili τ ‘’ τ ‘, AVi [τ ‘’] = AVi[τ] ∪ ITi [τ]

oraz ITi [τ ‘’] = ∅.
Stąd otrzymujemy:

¬activatei (AVi [τ’’]) = True, ITi [τ ‘’] = ∅

Predykat Sterm(P) przyjmuje zatem wartość True .

Udowodniliśmy więc, że opóźnienie między momentem zajścia predykatu Dterm(P) a momentem
zajścia predykatu Sterm(P) jest skończone lecz nieprzewidywalne. Wybór między jedną a drugą
definicją zakończenia zależy oczywiście od użytkownika. Łatwo przewidzieć, że detekcja stanu
opisanego predykatem Dterm(P) będzie trudniejsza, a więc w ogólności bardziej kosztowna. Z drugiej
jednak strony, zajście Dterm(P) może pozwolić, na przykład, na uznanie wyników przetwarzania za

ostateczne (w konsekwencji możliwe do dalszego wykorzystania) nawet, gdy pewne wiadomości są
jeszcze transmitowane.

Klasyczna definicja zakończenia

W klasycznej definicji zakończenia przyjmowano, że przetwarzanie rozproszone jest w stanie
zakończenia, jeżeli w danej chwili wszystkie procesy są pasywne i wszystkie kanały są puste, a więc
gdy zachodzi następujący predykat:

Cterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ (AVi = ∅).

Klasyczna definicja zakończenia a zakończenie statyczne

Rozważmy teraz relację między Sterm(P) a Cterm(P).

Twierdzenie 9.2

Jeżeli procesy są uaktywnione w sposób natychmiastowy w chwili zajścia predykatu activatei(AVi)
przez każdą dostępną wiadomość, to przetwarzanie rozproszone obejmujące zbiór procesów P jest
statycznie zakończone wtedy i tylko wtedy, gdy zachodzi predykat Cterm(P).

Dowód
Zgodnie z założeniem, procesy stają się aktywne natychmiast w chwili zajścia predykatu
activatei(AVi). W konsekwencji passivei jest równe True tylko wówczas, gdy ¬activatei(AVi). Stąd,
w wypadku procesów uaktywnianych każdą wiadomością:

passivei ∧ ¬activatei(AVi) ≡ passivei ∧ (AVi = ∅).

W konsekwencji:

Sterm(P) ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ ¬activatei(AVi))

 ≡ ∀Pi :: Pi ∈ P :: (passivei ∧ (ITi = ∅) ∧ (AVi = ∅) ≡ Cterm(P) .

Warto zauważyć silne związki między pojęciami zakończenia i zakleszczenia. W istocie, zakończenie
jest szczególnym wypadkiem zakleszczenia, w którym zakleszczone są wszystkie procesy
przetwarzania rozproszonego.

Problem detekcji zakończenia

Problem detekcji zakończenia przetwarzania rozproszonego obejmującego zbiór procesów,
sprowadza się do sprawdzenia czy przetwarzanie osiągnęło określony stan zakończenia, a więc – czy
zachodzi odpowiedni predykat: Dterm(P), Sterm(P) lub Cterm(P).

Można dowieść, że jeżeli w czasie przetwarzania aplikacyjnego wymienianych jest m wiadomości, to
niemożliwa jest konstrukcja algorytmu detekcji zakończenia o złożoności komunikacyjnej mniejszej
niż m.

Model przetwarzania synchronicznego

Na początku rozważony zostanie problem detekcji zakończenia w modelu przetwarzania
synchronicznego. W modelu tym przyjmuje się, że transmisje są natychmiastowe. Stąd kanały mogą
być uznane za puste przez cały czas i problem zakończenia sprowadza się do sprawdzenia czy
wszystkie procesy są jednocześnie pasywne.

Stan zakończenia opisuje więc następujący predykat:

Iterm(P) ≡ ∀Pi :: Pi ∈ P :: passivei

Detekcja zakończenia dla synchronicznego modelu przetwarzania

Zostanie obecnie omówiony algorytm autorstwa Dijkstry, Feijen oraz van Gasterena
detekcji zakończenia dla modelu przetwarzania synchronicznego. Wykorzystuje on wykorzystuje
koncepcję ciągu cykli detekcyjnych i zakłada, że wszystkie monitory procesów aplikacyjnych
połączone są w logiczny pierścień i obserwują stany procesów aplikacyjnych.

Monitorom (procesom) przypisany jest kolor White albo Black.

Monitory przesyłają wzdłuż pierścienia wiadomość kontrolną – znacznik typu TOKEN, który również
może mieć kolor White albo Black.

Początkowo monitory mają kolor White, a zmieniają kolor na Black, gdy odpowiadający im proces
aplikacyjny wyśle wiadomości do procesu o indeksie większym.

Monitor inicjujący detekcję zakończenia Qα= Q1 wysyła znacznik koloru White do swego następnika
w pierścieniu Qn jeżeli obserwowany przez niego proces aplikacyjny jest pasywny.

Każdy kolejny monitor Qi odbierający znacznik czeka aż obserwowany przez niego proces stanie się
pasywny i wówczas wysyła znacznik o kolorze zgodnym z kolorem monitora.

Po wysłaniu znacznika monitorowi przypisywany jest kolor White.

Algorytm kończy się, gdy znacznik koloru White dotrze do inicjatora. Dla uproszczenia prezentacji,
w algorytmie wykorzystano funkcje:

 succ(i) = (i) modn + 1

 pred(i) = (i+n−2) modn + 1

Przykład detekcji zakończenia runda zakończona niepowodzeniem

Na przedstawionym slajdzie inicjator (proces P1) przesyła znacznik koloru White do swojego
następnika, P6. Następnie znacznik ten jest przesyłany w pierścieniu do kolejnego procesu, P5. Oba te
procesy posiadają przypisany kolor White, a więc był pasywny w bieżącej rundzie detekcji. Znacznik
więc nie zmienia koloru. Tymczasem proces P4 wysyła wiadomość aplikacyjną do procesu P6, co
powoduje zmianę jego koloru na Black. Kiedy więc znacznik dociera do P4 zmienia kolor również na
Black. Po przejściu całego pierścienia znacznik powraca do inicjatora. Ponieważ znacznik przyjął kolor
Black, detekcja zakończenia nie została uwieńczona powodzeniem.

Przykład detekcji zakończenia runda zakończona sukcesem

Monitor zmienia więc kolor na White i ponownie wysyła znacznik o kolorze White do swojego
następnika w pierścieniu. Sytuacja jest podobna jak poprzednio – znacznik jest przesyłany między
procesami od inicjatora, P1, do jego następnika P6, dalej do P5. W tym momencie proces P4 wysyła
wiadomość do procesu P2 – nie powoduje to jednak zmiany koloru przypisanego do procesu, gdyż
indeks adresata wiadomości jest mniejszy niż indeks nadawcy. Kiedy więc znacznik dociera do
procesu P4, jego kolor się nie zmienia i dalej jest przesyłany również z przypisanym kolorem White.

Ostatecznie znacznik dociera do inicjatora detekcji, a ponieważ jego kolor pozostaje White, inicjator
może stwierdzić wykrycie zakończenia.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (1)

Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości
aplikacyjne. Drugi typ, TOKEN, to znacznik posiadający pole colour oznaczające kolor znacznika.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (2)

Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane
w postaci pcktOut. Wiadomość tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresenti określa
obecność znacznika w procesie Pi. Zmienna procColouri służy do określenia koloru monitora
(procesu). Zmienna terminationDetectedi zostaje ustawiona na True jeżeli wykryte zostało zakończenie.
Początkowo monitory mają kolor White.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (3)

Procedura INITPROC wywoływana jest przez monitor Qα (α = 1) podczas inicjacji kolejnej rundy.
Powoduje ona przesłanie następnikowi w pierścieniu znacznika o kolorze White oraz przypisanie
wartości White zmiennej procColourα.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (4)

Monitor inicjujący detekcję zakończenia Qα= Q1 wysyła znacznik koloru White (wywołując procedurę
INITPROC) do swego następnika w pierścieniu Qn jeżeli obserwowany przez niego proces aplikacyjny
 jest pasywny.

Monitor Qi zmienia kolor na Black, jeżeli obserwowany przez niego proces wysyła wiadomość
aplikacyjną do procesu o wyższym indeksie.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (5)

Algorytm nie przewiduje żadnych specjalnych akcji dla zdarzenia odbioru wiadomości aplikacyjnej.
Jest ona po prostu dostarczana do skojarzonego z monitorem procesu aplikacyjnego.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (6)

Odebranie znacznika (tokena) przez proces Qi wysłanego przez jego następnika w pierścieniu Qsucc(i),
powoduje ustawienie zmiennej tokenPresenti na wartość True. Znacznik jest zatrzymywany w monitorze
Qi do czasu aż obserwowany przez niego proces aplikacyjny Pi stanie się pasywny.

Jeżeli Qi =Qα i kolor zarówno obserwowanego procesu jak i znacznika jest White, inicjator kończy
algorytm decydując o wykryciu zakończenia. Jeżeli Qi =Qα ale albo kolor procesu, albo kolor znacznika
równy jest Black, inicjator rozpoczyna kolejną rundę algorytmu.

Detekcja zakończenia: Dijkstra, Feijen, van Gasteren (7)

Monitory Qi ≠Qα przesyła dalej token o kolorze takim samym jak kolor obserwowanego procesu
aplikacyjnego, zmienia następnie kolor procesu na White oraz zmienia wartość tokenPresenti na
wartość False.

Model przetwarzania dyfuzyjnego

Przetwarzanie dyfuzyjne (ang. diffusing computation) jest specyficznym przetwarzaniem
rozproszonym, w którym wyróżnia się:

• inicjatora (środowisko) – może w dowolnej chwili rozpocząć przetwarzanie dyfuzyjne
wysyłając wiadomość aplikacyjną do jednego lub wielu procesów kooperujących (zakłada się,
że inicjacja taka zachodzi tylko raz),

• hierarchię kooperujących procesów.

Każdy proces po uzyskaniu pierwszej wiadomości aplikacyjnej, nadawcę tej wiadomości traktuje jako
proces angażujący (ang. engager) i realizuje dalsze przetwarzanie wysyłając wiadomości do innych
procesów, w tym ewentualnie do inicjatora.

Założenia dodatkowe

Dla ułatwienia opisu przedstawianych algorytmów, przyjmiemy pewne dodatkowe upraszczające
założenia:

• Proces aktywny staje się procesem pasywnym tylko w wyniku pewnego zdarzenia
wewnętrznego

• Proces zawsze staje się aktywny po otrzymaniu wiadomości

• Proces pasywny może stać się aktywny tylko w wyniku otrzymaniu wiadomości

Innymi słowy, proces aplikacyjny może w dowolnej chwili stać się pasywny i oczekiwać na
uaktywniającą go wiadomość aplikacyjną od dowolnego innego procesu. Warunek uaktywnienia
procesu definiuje zatem model żądań OR i zbiór warunkujący Di = P \ { Pi }.

Koncepcja algorytmu detekcji zakończenia (Dijkstra-Scholten ’80)

Monitory procesów aplikacyjnych przesyłają wiadomości kontrolne typu SIGNAL jako pewnego
rodzaju odpowiedzi na wiadomości aplikacyjne.

Monitor pasywnego inicjatora może stwierdzić zakończenie całego przetwarzania aplikacyjnego, gdy
odbierze wiadomości SIGNAL od wszystkich monitorów związanych z procesami uaktywnionymi przez
inicjatora.

Graf przetwarzania dyfuzyjnego

Inicjatorem przetwarzania dyfuzyjnego w przestawionym przykładzie jest P1. Staje się on procesem
angażującym dla procesów P2, P3 oraz P4. Każdy z nich z kolei sam angażuje kolejne procesy.
Procesy tworzą więc drzewo, a wiadomości są przesyłane od inicjatora (korzenia drzewa) i niżej.

Graf przetwarzania dyfuzyjnego (2)

Procesy odsyłają specjalne wiadomości, poczynając od liści drzewa. Każdy proces – węzeł drzewa
przesyła wiadomość do swojego procesu angażującego, jeśli zebrał już wiadomości od wszystkich
procesów potomnych. W momencie, w którym inicjator zbierze wszystkie wiadomości od swoich
procesów potomnych, może uznać, że zostało wykryte zakończenie przetwarzania.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (1)

Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości
aplikacyjne. Drugi typ, SIGNAL to specjalna wiadomość kontrolna przesyłana między monitorami.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (2)

Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane
w postaci pcktOut. Zmienna engageri zawiera identyfikator monitora, którego proces uaktywnił Pi. Z
kolei zbiór notEngageri oznacza zbiór monitorów różnych od monitora angażującego, od których
odebrano pakiet. Zmienne recvNoi oraz sentNoi oznaczają, odpowiednio, liczbę wiadomości
odebranych bądź wysłanych przez Pi a nie potwierdzonych jeszcze przez Qi wiadomością typu
SIGNAL. Zmienna terminationDetectedi zostaje ustawiona na True jeżeli wykryte zostało zakończenie.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (3)

Przetwarzanie dyfuzyjne jest inicjowane przez proces Pα który wysyła wiadomości do swoich

bezpośrednich potomków w hierarchii należących do zbioru Pα
R. Zmienna sentNoα zawiera liczbę tych

wysłanych wiadomości.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (4)

Zdarzenie wysłania wiadomości typu SIGNAL może zajść dla monitora Qi dla tylko wtedy, gdy
(recvNoi > 1) ∨ (recvNoi = 1 ∧ sentNoi = 1 ∧ passivei). Monitor Qi wysyłając wiadomość typu SIGNAL
sprawdza, czy odebrał już wiadomości od wszystkich procesów poza angażującym (recvNoi = 1), nie
wysłał żadnej nie potwierdzonej wiadomości (sentNoi = 0) a skojarzony zeń proces jest pasywny. W
takim wypadku wysyła procesowi angażującemu sygnał. W przeciwnym wypadku wysyła wiadomość
kontrolną typu SIGNAL do wszystkich monitorów procesów od których otrzymał jakąś wiadomość i
jeszcze jej nie potwierdził do tej pory wiadomością SIGNAL, poza monitorem procesu angażującego, i
usuwa te procesy z zbioru notEngageri. Wreszcie dekrementuje zmienną recvNoi.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (5)

Monitor Qi odbierając sygnał dekrementuje zmienną sentNoi (gdyż zmienna ta oznacza ilość nie
potwierdzonych wysłanych wiadomości). Jeżeli

Qi = Qα ∧ sentNoi = 0, to w momencie w którym skojarzony proces aplikacyjny Pα stanie się pasywny,
monitor decyduje o wykryciu zakończenia.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (6)

Zdarzenie wysłania wiadomości aplikacyjnej może zajść dla monitora Qi dla i ≠ α tylko wtedy, gdy
recvNoi > 0 ∧ ¬ passivei. Wysyłając dowolną wiadomość aplikacyjną monitor inkrementuje licznik nie
potwierdzonych wiadomości sentNoi.

Algorytm detekcji zakończenia dla dyfuzyjnego modelu przetwarzania (7)

W przypadku otrzymania wiadomości, jeżeli jest to pierwsza otrzymana wiadomość (recvNoi = 0) to
monitor Qi uznaje nadawcę za proces angażujący, a w przeciwnym wypadku dodaje go do zbioru
notEngageri. Następnie inkrementuje licznik recvNoi i dostarcza wiadomość procesowi aplikacyjnemu.

Twierdzenie 9.3

Twierdzenie 9.3

Jeżeli przetwarzanie dyfuzyjne uległo zakończeniu, fakt ten ulega wykryciu przez algorytm Dijkstry-
Scholtena.

Dowód
Jeżeli przetwarzanie dyfuzyjne ulega zakończeniu, oznacza to, że nie ma żadnego aktywnego
procesu ani nie ma żadnych wiadomości ani sygnałów w kanałach komunikacyjnych. Oznacza to
także, że żaden proces nie może wysyłać żadnych wiadomości ani potwierdzeń. W związku z tym,
można wywnioskować, że jeżeli przetwarzanie ulegnie zakończeniu, to w każdym procesie Pi (za
wyjątkiem procesu-inicjatora) zachodzi: recvNoi ≥ 0 ∧ sentNoi ≥ 0 oraz recvNoi > 1 ∨ (recvNoi = 1 ∧
sentNoi = 0). Spostrzeżenie to można uprościć do postaci recvNoi = 0 ∨ (recvNoi = 1 ∧ sentNoi > 0).

Z kolei dla procesu inicjującego oczywiste jest, że zachodzi recvNoi = 0 ∧ sentNoi ≥ 0).

Dalej można wywnioskować, że w stanie zakończenia przetwarzania ∀Pi: recvNoi ≤ sentNoi . Ponieważ
żadne wiadomości ani sygnały nie są przesyłane, więc suma wszystkich recvNoi wszystkich procesów
musi być równa sumie wszystkich sentNoi. Z tych dwóch wniosków oraz z spostrzeżenia tyczącego
wartości zmiennych u inicjatora, wynika, że w wyniku zakończenia przetwarzania w procesie inicjatora
zachodzi recvNoi = sentNoi = 0, a ponieważ proces ten jest pasywny, więc zostaną spełnione warunki
wykrycia zakończenia.

Detekcja zakończenia dla systemów asynchronicznych (Misra ’83)

Dla systemów asynchronicznych można wykorzystać w celu detekcji zakończenia algorytm (Misra’83),
który nie czyni żadnych założeń co do topologii przetwarzania i czasu przesyłania. Algorytm ten
wymaga natomiast, by żadne nie wiadomości nie były gubione podczas transmisji (niezawodność
komunikacji) oraz by kanały komunikacyjne zachowywały porządek wysyłania wiadomości (kanały
FIFO).

Algorytm ten, podobnie jak przedstawiony wcześniej algorytm dla modelu synchronicznego (Dijkstra,
Feijen, van Gasteren) używa znacznika, oraz kolorowanie procesów. Dla ułatwienia analizy, można
przyjąć, że wszystkie topologia przetwarzania to graf w pełni połączony, jednakże algorytm łatwo
można dostosować do dowolnej topologii, co zostanie pokazane dalej.

Detekcja zakończenia dla systemów asynchronicznych: algorytm (1)

Algorytm wykorzystuje pakiety dwóch typów: pierwszy, typ PACKET, opakowują wiadomości
aplikacyjne. Drugi typ, TOKEN to specjalna wiadomość kontrolna, znacznik, przesyłana między
monitorami, zawierające pole nb oznaczające liczbę procesów odwiedzonych przez znacznik, które
były pasywne.

Algorytm detekcji zakończenia dla systemów asynchronicznych (2)

Wiadomość msgIn oznacza wiadomość aplikacyjną wysyłaną przez proces Pi, która jest opakowywane
w postaci pcktOut. Wiadomość tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresenti określa
obecność znacznika w procesie Pi. Zmienna colouri służy do określenia koloru monitora (procesu).
Zmienna terminationDetectedi zostaje ustawiona na True jeżeli wykryte zostało zakończenie.
Początkowo monitory mają kolor White.

Dwie zmienne związane są z topologią przetwarzania. Zmienna succi zawiera następnika procesu Pi w
cyklu obejmującym wszystkie kanały komunikacyjne. Związane jest to z wymaganiem, by znacznik
typu TOKEN odwiedził wszystkie kanały łączące procesy. C oznacza zbiór wszystkich kanałów
tworzących cykl obejmujący wszystkie kanały komunikacyjne.

Algorytm detekcji zakończenia dla systemów asynchronicznych (3)

Zaczynając detekcję, proces wysyła znacznik do swojego następnika w cyklu, przypisując polu nb tego
znacznika wartość 0.

Algorytm detekcji zakończenia dla systemów asynchronicznych (4)

Otrzymanie wiadomości aplikacyjnej przez monitor Qi powoduje, poza uaktywnieniem procesu Pi i
dostarczeniem wiadomości, zmianę koloru procesu na Black.

Algorytm detekcji zakończenia dla systemów asynchronicznych (5)

Po otrzymaniu znacznika, monitor Qi przesyła go dalej w momencie, gdy obserwowany przez niego
proces staje się pasywny. Jeżeli kolor procesu równa się Black, pole nb znacznika jest zerowane. W
przeciwnym razie jest ono inkrementowane. Kolor procesu następnie ustawiany jest na White oraz
monitor przesyła znacznik do swojego następnika w cyklu. Oznacza to, że każdy proces musi
pozostać pasywny pomiędzy wszystkimi odwiedzinami znacznika, a znacznik musi co najmniej dwa
razy przejść cykl.

Detekcja zakończenia dla systemów asynchronicznych: algorytm (6)

Inicjator Pα przetwarzania, po otrzymaniu znacznika, jeżeli kolor procesu Pα posiada wartość White
oraz jeżeli wartość zapisana w polu nb otrzymanego znacznika równa jest liczbie kanałów
komunikacyjnych (liczbie krawędzi grafu topologii przetwarzania), decyduje o wykryciu zakończenia.
W przeciwnym wypadku przesyła znacznik dalej, być może zerując wartość pola nb w podobny
sposób, jak każdy inny proces.

Warte podkreślenia jest, że w ogólności każdy monitor, a nie tylko inicjator może dokonać decyzji o
wykryciu detekcji zakończenia obserwując pole nb oraz kolor obserwowanego przez siebie procesu.

Cechy algorytmu Misra’83

Aby dostosować przedstawiony algorytm do dowolnej topologii, wystarczy ustawić odpowiednio
wartości zmiennej succi – wystarczy podzielić graf topologii przetwarzania na zbiór cykli o
maksymalnej długości i odwiedzać je po kolei. Wiele monitorów naraz może dokonywać detekcji
zakończenia – w takim wypadku wystarczy dodać do znacznika pole wskazujące na inicjatora detekcji.
Dużą wadą algorytmu jest wymaganie, by cykle obejmujące kanały komunikacyjne były znane z góry.

Należy tutaj podkreślić, że w algorytmie dowolny monitor może decydować o wykryciu zakończenia i w
gruncie rzeczy żaden z nich nie jest wyróżniony.

