Problem detekcji zakonczenia (1)

Przetwarzanie rozproszone

Problem detekcji zakonczenia (l)

Wyktad prowadza:

Jerzy Brzezinski
Jacek Kobusinski

Problem detekcji zakonczenia (1)

Plan wykiadu

Przetwarzanie rozproszone

Plan wyktadu

* Problem zakonczenia - przyktady
+ Definicje zakonczenia
« Zakonczenie dynamiczne i statyczne

» Detekcja zakonczenia dla synchronicznego modelu
przetwarzania

* Detekcja zakonczenia dla dyfuzyjnego modelu
przetwarzania

Problem detekcji zakonczenia (1) (2)

Celem wyktadu jest zapoznanie studenta z tematykg detekcji zakonczenia. Wykiad obejmie
przedstawienie przykladow ilustrujgcych potrzebe problemy detekcji zakonczenia w systemach
rozproszonych (zakonczenie sortowania rozproszonego oraz algorytm Matterna konstrukcji spéjnego
obrazu stanu globalnego), nastepnie rézne definicje zakohczenia (zaréwno nieformalng jak i formalna,
a takze definicja klasyczna zakonczenia), pojecia zakonczenia dynamicznego i statycznego i relacje
miedzy nimi, zagadnienia zwigzane z detekcjg zakohczenia w réznych modelach przetwarzania,
takich jak model synchroniczny i dyfuzyjny. Student zapozna sie réwniez z algorytmami detekgc;ji
zakonczenia Dijkstry, Feijena, van Gastarena, algorytmem Dijkstry-Scholtena oraz algorytmem Misry
dla systemow asynchronicznych.

Problem detekcji zakonczenia: przyktady

Przetwarzanie rozproszone

Problem detekcji zakonczenia: przyktady

* Rozproszone sortowanie

+ Algorytm Matterna konstrukcji spojnego obrazu stanu
globalnego w srodowisku z kanatami nonFIFO.

Problem detekcji zakonczenia (1) (3)

W celu ilustracji problemu detekcji zakohczenia zostang przedstawione dwa proste przyktady: problem
sortowania rozproszonego oraz znany juz z wczesniejszych wyktadow algorytm Matterna konstrukgciji
spéjnego obrazu stanu globalnego w srodowisku z kanatami non-FIFO.

Przyklad 1 — sortowanie rozproszone

Przetwarzanie rozproszone

Przyktad 1 — sortowanie rozproszone

Rozwazmy problem sortowania rozproszonego zbioru X skfadajgcego sie

z v roznych liczb naturalnych, w $rodowisku rozproszonym o » weztach
(procesorach), n < v.

+ Zadaniem kazdego procesu jest uporzagdkowanie przypisanej mu
czesci zbioru liczb naturalnych i wyznaczenie elementu
minimalnego

» Elementy minimalne sg wysytane do lewych sgsiaddw.

* Po otrzymaniu wiadomosci z warto$cig minimalng, proces
wyznacza element maksymalny i wysyta go do prawego sgsiada.

Problem detekcji zakonczenia (1) (4)

Przykfad 1

Nalezy posortowac zbidr liczb naturalnych. Zbiér ten jest podzielony miedzy procesy a zadaniem
kazdego procesu jest uporzgdkowanie przypisanej mu czesci zbioru liczb naturalnych i wyznaczenie
elementu minimalnego, ktory nastepnie jest wysytany do lewych sgsiadow. Po otrzymaniu wiadomo$ci
z warto$cig minimalng, proces wyznacza element maksymalny i wysyta go do prawego sgsiada. Kroki
te sg powtarzane dopadki zbidr nie zostanie uporzadkowany.

Sortowanie rozproszone: definicje

Przetwarzanie rozproszone

Sortowanie rozproszone: definicje

Zbior wstepnie podzielony na podzbiory X;
v, — liczba elementow zbioru X,
min; — minimalny element zbioru X

max;, — maksymalny element zbioru X;

P, — procesy tworzgce przetwarzanie rozproszone
topologii tancucha skojarzone ze zbiorami &

Pary proceséw sktadowych P, P,,, potgczone sg
kanatami dwukierunkowymi.

Problem detekcji zakonczenia (1) (5)

Przyjmijmy, Ze zbidr X’ zostaje wstepnie podzielony na podzbiory X; w taki sposéb, ze:
X= X
oraz

Vij o (IS j<n) A (i=)) s (AN A= 2) A (Vis I<is<n: A= ©)

Niech:

e v; - liczba elementéow zbioru X;

e min; — minimalny element zbioru &;

e max; — maksymalny element zbioru X;

e P; —procesy tworzgce przetwarzanie rozproszone o topologii fancucha skojarzone ze zbiorami
X,

Pary proceséw skfadowych P;, P, 1 <i<n-1, potgczone sg kanatami dwukierunkowymi

Sortowanie rozproszone — przyktad

Przetwarzanie rozproszone

Sortowanie rozproszone — przyktad

Problem detekcji zakonczenia (1) (6)

Kazdy z procesow P;.; ma za zadanie uporzadkowaé (posortowac) przypisany mu na wstepie zbiér X
#+1 I wyznaczy¢ element min;.;.
Nastepnie procesy wysytajg elementy min;,; do swoich lewych sgsiadéw i oczekujg na odpowiedz

zawierajgcg max;.. Po otrzymaniu wiadomosci z wartoscig min;,;, a przed wystaniem odpowiedzi,
proces P; wyznacza nowy element max;.

W ogdlnosci, nowo wyznaczony max; moze by¢ réwny otrzymanemu ostatnio min;.;. Nastepnie kazdy
z proceséw wysyta odpowiedz ze swoim elementem maksymalnym do prawego sagsiada. Po
otrzymaniu odpowiedzi, procesy znow sortuja zbiory X ijesli w wyniku tego sortowania warto$¢ min;.,

rézni¢ sie bedzie od poprzednio wystanego elementu minimalnego, to proces wysyla ten nowy
element min;,; do lewego sasiada. Cel sortowania rozproszonego zostaje osiggniety, gdy

uporzadkowany zostanie kazdy zbiér X;, a ponadto dla kazdego i: 1 < i < n-1, max; <min;,.

Sortowanie rozproszone — przyktad (2)

Przetwarzanie rozproszone

Sortowanie rozproszone — przyktad (2)

@54 o)e) |

Problem detekcji zakonczenia (1) (7)

Slajd przedstawia efekt posortowania przyktadowego zbioru liczb za pomoca przedstawionego
algorytmu.

Problem zakonczenia

Przetwarzanie rozproszone

Nie, jestem
wolny

Ja tez
skonczytem

Przed chwilg
skonczylem ﬂ
- \§
a—
..\ k.P 4
c</’/: :-l——_:-' S e ..
\
P 3
Czy juz nastapit koniec

przetwarzania ?
Moze jeszcze nie 7

Juz
skonczyltem

Problem zakonczenia

Nuda, nie ma
co robic.

Uff, chyba
koniec ...

Jak leci 7

Problem detekcji zakonczenia (1) (8)

Problem jednak w tym, ze kazdy proces ma tylko wiedze lokalng, dotyczacg jego lokalnego zbioru
i czesciowo zbioréw bezposrednich sgsiadéw. Na tej podstawie procesy nie moga jednak wnioskowac
0 zakohczeniu catego przetwarzania. Potrzebny jest zatem dodatkowy mechanizm pozwalajacy
stwierdzié, ze globalne warunki zakonczenia sortowania rozproszonego zostaty spetnione.

Przykiad 2 — obraz stanu globalnego

Przetwarzanie rozproszone

Przyktad 2 — obraz stanu globalnego

Algorytm Matterna konstrukcji spéjnego obrazu stanu
globalnego dla kanatéw nonFIFO.

* Otrzymanie wiadomosci koloru Red nie oznacza, ze w
kanatach nie ma juz wiadomosci White

* Obraz stanu globalnego musi zawiera¢ wszystkie
wiadomosci White

Problem detekcji zakonczenia (1) (9)

Przyktad 2: Algorytm Matterna konstrukcji spéjnego obrazu stanu globalnego w srodowisku z kanatami
nonFIFO.

Ze wzgledu na mozliwe zmiany uporzadkowania wiadomosci w kanatach otrzymanie wiadomosci
koloru Red nie przesadzato o tym, Ze w kanatach nie ma juz wczesniej wystanych wiadomosci koloru
White. Poniewaz jednak zbidr otrzymanych przez proces koloru Red wiadomos$ci White okresla stan
kanalu w wyznaczanym obrazie stanu globalnego, niezbedne jest niezalezne od procesu konstrukcji
obrazu stanu globalnego sprawdzenie, czy w kanatach nie ma jeszcze wiadomosci koloru White.
Dopiero bowiem wéwczas, gdy stwierdzimy, ze wszystkie wiadomosci koloru White zostaty odebrane,
wyznaczone stany kanatéw odpowiadajg spéjnemu obrazowi stanu globalnego.

Definicja nieformalna zakonczenia

Przetwarzanie rozproszone

Definicja nieformalna zakonczenia

Definicja nieformalna:

Nieformalnie problem detekcji zakonczenia przetwarzania
rozproszonego polega na sprawdzeniu, czy wszystkie
procesy przetwarzania sg w stanie pasywnym oraz czy
zadna wiadomos¢ bedgca w kanale (transmitowana lub
dostepna) nie uaktywni ktéregokolwiek z tych procesow.

Problem detekcji zakoriczenia (1) (10)

Nieformalnie problem detekcji zakohczenia przetwarzania rozproszonego polega na sprawdzeniu, czy
wszystkie procesy przetwarzania sg w stanie pasywnym oraz czy zadna wiadomos¢ bedgca w kanale
(transmitowana lub dostepna) nie uaktywni ktéregokolwiek z tych proceséw. Przez proces aktywny
rozumiemy tutaj wykonujacy kroki algorytmu; w przeciwnym wypadku uznajemy go za pasywny.
Doktadne definicje zostaty przedstawione na wczesniejszych wyktadach.

Przez zakonczenie obliczeh rozproszonych mamy tutaj na mysli osiggniecie pewnej koncowej
konfiguracji, w ktorej nie sg juz mozliwe dalsze kroki algorytmu.

Definicja formalna: Oznaczenia (1)

Przetwarzanie rozproszone

Definicja formalna: Oznaczenia (1)

W formalnej definicji tego problemu wykorzystane sg
nastepujgce oznaczenia:
« passive; —zmienna logiczna (predykat) przyjmujgca
wartos¢ True wtedy i tylko wtedy, gdy
proces P, jest pasywny
* available; —tablica [1..n] zmiennych logicznych procesu
P, skojarzona z wiadomosciami dostepnymi
* available, [j] — j-ty element tablicy available; przyjmujacy
wartos¢ True, gdy dla P, jest dostepna
wiadomos¢ wystana przez P,

Problem detekcji zakoniczenia (1) (11)

W sformutowaniu formalnym tego problemu, podobnie jak w sformutowaniu problemu zakleszczenia,
wykorzystamy nastepujace oznaczenia:

e passive; — zmienna logiczna (predykat) przyjmujgca wartos¢ True wtedy i tylko wtedy, gdy
proces P; jest pasywny

e available; — tablica [1..n] zmiennych logicznych procesu P; skojarzona z wiadomosciami
dostepnymi

o available;[j] — j-ty element tablicy available;przyjmujacy wartos¢ True, gdy dla P; jest
dostepna wiadomos$¢ wystana przez P;

Definicja formalna: Oznaczenia (2)

Przetwarzanie rozproszone

Definicja formalna: Oznaczenia (2)

* in-transit;
tablica [1..n] zmiennych logicznych procesu P; skojarzona
z wiadomosciami transmitowanymi

* in-transit]j]
J-ty element tablicy in-transit; przyjmujgcy wartos¢ True,
gdy wiadomos¢ wystana przez P; do P; nalezy do LT_”, a

wiec jest transmitowana i nie jest jeszcze dostepna
* AV, = {P;: available|j] = True}

« IT7;= {P; : intransit|[j] = True}

Problem detekcji zakonczenia (1) (12)

in-transit; — tablica [1..n] zmiennych logicznych procesu P; skojarzona z wiadomosciami
transmitowanymi

in-transit;[j] — j-ty element tablicy in-transit; przyjmujacy wartos¢ True, gdy wiadomos¢ wystana
przez P; do P; nalezy do LTj,i, a wiec jest transmitowana i nie jest jeszcze dostepna
Oprécz tego przyjmiemy oznaczenie dwoch zbioréw proceséw AV, oraz Z7; , zdefiniowanych w
nastepujacy sposob:
AV = {P; : availablei[j] = True}
ZT; = {P;: intransitj[j] = True}

Zakonczenie dynamiczne

Przetwarzanie rozproszone

Zakonczenie dynamiczne

Nieformalnie, przetwarzanie rozproszone jest w stanie
zakonczenia dynamicznego, jezeli Zzaden proces
sktadowy przetwarzania rozproszonego nie bedzie juz
nigdy uaktywniony. Stan ten bedzie utrzymywany
pomimo, ze pewne wiadomosci sg wcigz transmitowane,
a pewne wiadomosci sg juz dostepne.

Problem detekcji zakoniczenia (1) (13)

Przetwarzanie rozproszone /7 jest w danej chwili w stanie zakoriczenia dynamicznego, jezeli zaden
proces sktadowy przetwarzania rozproszonego nie bedzie juz nigdy uaktywniony. Stan ten bedzie
utrzymywany pomimo, ze pewne wiadomosci sg wcigz transmitowane, a pewne wiadomosci sg juz
dostepne.

Zakonczenie dynamiczne: definicja formalna

Przetwarzanie rozproszone

Zakonczenie dynamiczne: definicja formalna

Przetwarzanie rozproszone /7 jest w danej chwili w stanie
zakonczenia dynamicznego, gdy spetniony jest predykat:

Dterm(P) = VP,:: PP :: (passive, \ —activate (AV; UZLT;)) (9.1)

Definicja zakonczenia dynamicznego uwzglednia
rzeczywistg aktywnos$é procesdw wyrazong przez zmienng
passive; oraz potencjalng aktywnoS¢ wyrazong przez
predykat activate (AV,JULT,).

Predykat Dterm('P) jest predykatem stabilnym.

Problem detekcji zakoniczenia (1) (14)

Przedstawiong definicje mozna bardziej formalnie zapisa¢ z wykorzystaniem przedstawionych
wczesniej oznaczeh w nastepujgcy sposob: przetwarzanie rozproszone /7 jest w danej chwili w stanie
zakonczenia dynamicznego, gdy spetniony jest predykat:

Dterm(P) = VP;:: P; € P :: (passive; A — activatei(AV, UZTY))

Predykat ten oznacza, ze zaden proces sktadowy przetwarzania rozproszonego nie bedzie juz nigdy
uaktywniony. Stan ten bedzie utrzymywany pomimo, ze pewne wiadomos$ci sg wcigz transmitowane

(ZT=2), a pewne wiadomosci sa juz dostepne (AV, = o).

Takie sformutowanie definiujacego stan zakonczenia jest interesujgce z praktycznego punktu
widzenia, gdyz pozwala stwierdzi¢ zakonczenie przetwarzania nawet przed dotarciem wszystkich
wiadomosci do procesow (weztdw) docelowych. Definicja zakonczenia dynamicznego uwzglednia
rzeczywista aktywnos$¢ procesdéw wyrazong przez zmienng passive; oraz potencjalng aktywnosc

wyrazong przez predykat activate;(AV,UZLT;).

Predykat Dterm(P) jest predykatem stabilnym.

Zakonczenie statyczne

Przetwarzanie rozproszone

Zakonczenie statyczne

Nieformalnie, przetwarzanie rozproszone jest w stanie
zakonczenia statycznego, jezeli:

+ wszystkie procesy sg pasywne

+ wszystkie wiadomosci znajdujgce sie w kanatach sg
dostepne

+ dla Zzadnego procesu nie jest spetniony warunek
uaktywnienia

Problem detekcji zakoriczenia (1) (15)

Przetwarzanie rozproszone /7 jest w danej chwili w stanie zakoriczenia statycznego, jezeli wszystkie
procesy sg pasywne, wszystkie wiadomosci znajdujgce sie w kanatach sg dostepne i dla zadnego
procesu nie jest spetniony warunek uaktywnienia.

Zakonczenie statyczne: definicja formalna

Przetwarzanie rozproszone

Zakonczenie statyczne: definicja formalna

Przetwarzanie rozproszone /7 jest w danej chwili w stanie
zakonczenia statycznego, gdy spetniony jest predykat:

Sterm(P) = VP,:: P€P :: (passive, N (LT=2) N\ —activate(AV;)) (9.2)

Poréwnujgc z Dterm(P), predykat Sterm(P) odpowiada detekcji
nieco poézniejszej, gdyz dodatkowo wymaga sie, by
wiadomosci nie byly juz transmitowane (Z7;= 9).

Problem detekcji zakorczenia (1) (16)

Przetwarzanie rozproszone /7 jest w danej chwili w stanie zakoriczenia statycznego, gdy spetniony jest
predykat:
Sterm(P) = VP;:: PieP :: (passive; A (ZT; = &) A —activatei(AV),))

Oznaczenia w powyzszym wzorze wprost odpowiadajg wczesniej podanej definicji: wszystkie procesy
sg pasywne (passive; = True), wszystkie wiadomosci znajdujgce sie w kanatach sg dostepne (Z7; =)
i dla zadnego procesu nie jest spetniony warunek uaktywnienia (activate;(.AY;) =False). Definicja ta
uwzglednia zatem zaréwno stany proceséw jak i stany kanatow.

Poréwnujac z Dterm(P), predykat Sterm(P) odpowiada detekcji nieco pozniejszej, gdyz dodatkowo

wymaga sie, by wiadomosci nie byty juz transmitowane (Z7; = @).

Zakonczenie dynamiczne < statyczne

Przetwarzanie rozproszone

Zakonczenie dynamiczne i statyczne

Niech ¢ «~1' oznacza, ze zaj$cie predykatu ¢/ prowadzi w

skonczonym cho¢ nieprzewidzianym czasie do zajscia
predykatu 7.

Twierdzenie 9.1

Dterm('P) «~ Sterm(P)

Problem detekcji zakoniczenia (1) (17)

Niech ¢ «~~ 1’ 0znacza, ze zajscie predykatu ¢ prowadzi w skohczonym cho¢ nieprzewidzianym czasie

do zajscia predykatu .
Twierdzenie 9.1

Dterm(P) «~ Sterm(P)
Dowéd

Wchwili 7, gdy Dterm(P) = True, wszystkie procesy P; sg pasywne, zachodzi
—activate;(AV, U ZT;)[7], a czes¢ wiadomosci moze znajdowac sie w kanatach. Jednakze, wszystkie
wiadomosci transmitowane sg brane pod uwage, aich dotarcie do weztdw docelowych iw
konsekwenciji ich dostepnosé, jest uwzgledniona w wartosci predykatu —activatei(.AV; U Z7;). Wobec
niezawodnosci kanatéw, wiadomo$ci transmitowane osiggng wezly docelowe po skohczonym choc¢
nieprzewidywalnym czasie, w pewnym momencie 7 ‘> 7. Woéwczas Z7; [t ‘] = @. Wobec statej
pasywnosci wszystkich procesow od chwili 7, w kazdej chwili 77 > 7, AV [7 "] = AV[7] U ZT/[7]
oraz ZTi[7°] = @.

Stad otrzymujemy:

—activate; (AV,[7°]) =True, ZT[7]=O
Predykat Sterm(P) przyjmuje zatem warto$¢ True . O

Udowodnili$my wiec, ze opdznienie miedzy momentem zajscia predykatu Dterm(P) a momentem
zajscia predykatu Sterm(PP) jest skohnczone lecz nieprzewidywalne. Wybor miedzy jedng a druga

definicjq zakonczenia zalezy oczywiscie od uzytkownika. tatwo przewidzie¢, Zze detekcja stanu
opisanego predykatem Dterm(P) bedzie trudniejsza, a wiec w ogolnosci bardziej kosztowna. Z drugiej

jednak strony, zajscie Dterm(P) moze pozwoli¢, na przyktad, na uznanie wynikéw przetwarzania za

ostateczne (w konsekwencji mozliwe do dalszego wykorzystania) nawet, gdy pewne wiadomosci sg
jeszcze transmitowane.

Klasyczna definicja zakonczenia

Przetwarzanie rozproszone

Klasyczna definicja zakonczenia

W klasycznej definicji zakonczenia przyjmowano, ze
przetwarzanie rozproszone jest w stanie zakonczenia,
jezeli w danej chwili wszystkie procesy sg pasywne i
wszystkie kanalty sg puste, a wiec gdy zachodzi
nastepujgcy predykat:

Cterm(P) = VP,:: PP :: (passive, N (LT=2) N\ (AV~=2) (9.3)

Problem detekcji zakoriczenia (1) (18)

W klasycznej definicji zakornczenia przyjmowano, ze przetwarzanie rozproszone jest w stanie
zakonczenia, jezeli w danej chwili wszystkie procesy sg pasywne i wszystkie kanaty sg puste, a wiec
gdy zachodzi nastepujacy predykat:

Cterm(P) = VP;:: P; € P :: (passive; A (ZT; = @) A (AV;= @).

Klasyczna definicja zakonczenia a zakonczenie statyczne

Przetwarzanie rozproszone

Zakonczenie klasyczne i statyczne

Twierdzenie 9.2

Jezeli procesy sg uaktywnione przez kazdg dostepng
wiadomos$¢, to przetwarzanie rozproszone obejmujgce zbidr
procesow P jest statycznie zakonczone wtedy i tylko wtedy,
gdy zachodzi predykat Cterm(7P).

Problem detekcji zakoniczenia (1) (19)

Rozwazmy teraz relacje miedzy Sterm(P) a Cterm(P).

Twierdzenie 9.2

Jezeli procesy sg uaktywnione w sposdb natychmiastowy w chwili zaj$cia predykatu activate;(AV))
przez kazdg dostepng wiadomosé, to przetwarzanie rozproszone obejmujgce zbiér procesow P jest
statycznie zakonczone wtedy i tylko wtedy, gdy zachodzi predykat Cterm(7P).

Dowéd
Zgodnie z zatozeniem, procesy stajg sie aktywne natychmiast w chwili zajscia predykatu

activate;(LAY;). W konsekwencji passive; jest rowne True tylko woéwczas, gdy —activatei(.4Y;). Stad,
w wypadku proceséw uaktywnianych kazdg wiadomoscia:

passive; A —activatej(AV)) = passive; A (AV,= 2).

W konsekwenciji:

Sterm(P) = VP;:: P; € P :: (passive; A (ZT; = @) A —activatei((AV),))
=VP;:: P € P:: (passive; A (ZTi = 2) A (AV,= @) = Cterm(P) . O

Warto zauwazy¢ silne zwigzki miedzy pojeciami zakonczenia i zakleszczenia. W istocie, zakonczenie
jest szczegolnym wypadkiem zakleszczenia, w ktorym zakleszczone sg wszystkie procesy
przetwarzania rozproszonego.

Problem detekcji zakonczenia

Przetwarzanie rozproszone

Problem detekcji zakonczenia

Problem detekcji zakoniczenia przetwarzania rozproszonego
obejmujgcego zbidér procesdéw, sprowadza sie do
sprawdzenia czy przetwarzanie osiggneto okreslony stan
zakonczenia, a wiec — czy zachodzi odpowiedni
predykat: Dterm(P), Sterm(P) lub Cterm(P).

Problem detekcji zakoriczenia (1) (20)

Problem detekcji zakonczenia przetwarzania rozproszonego obejmujgcego zbidr proceséw,
sprowadza sie do sprawdzenia czy przetwarzanie osiggneto okreslony stan zakonczenia, a wiec — czy

zachodzi odpowiedni predykat: Dterm(P), Sterm(P) lub Cterm(P).

Mozna dowies¢, ze jezeli w czasie przetwarzania aplikacyjnego wymienianych jest m wiadomosci, to
niemozliwa jest konstrukcja algorytmu detekcji zakonczenia o ztozonosci komunikacyjnej mniejsze;j
niz m.

Model przetwarzania synchronicznego

Przetwarzanie rozproszone

Model przetwarzania synchronicznego

W modelu przetwarzania synchronicznego przyjmuje sie,
ze transmisje sg natychmiastowe. Stad kanaty mogg byc¢
uznane za puste przez caty czas i problem zakonczenia
sprowadza sie do sprawdzenia czy wszystkie procesy sg
jednoczesnie pasywne.

Stan zakonczenia opisuje nastepujgcy predykat:

Iterm(P) = VP,:: P, € P :: passive, (9.4)

Problem detekcji zakonczenia (1) (21)

Na poczatku rozwazony zostanie problem detekcji zakohczenia w modelu przetwarzania
synchronicznego. W modelu tym przyjmuje sie, ze transmisje sg natychmiastowe. Stad kanaty moga
by¢ uznane za puste przez caly czas iproblem zakorhczenia sprowadza sie do sprawdzenia czy
wszystkie procesy sg jednoczesnie pasywne.

Stan zakonczenia opisuje wiec nastepujacy predykat:

Iterm(P) = VP;:: P; € P :: passive;

Detekcja zakonczenia dla synchronicznego modelu przetwarzania

Przetwarzanie rozproszone

Detekcja zakonczenia dla modelu synchronicznego

* Monitorom przypisany jest kolor: White lub Black (poczatkowo White)

» W pierscieniu przesytany jest znacznik (z przypisanym kolorem)

+ Poczatkowo monitory majg kolor White, a zmieniajg kolor na Blactk,
gdy odpowiadajacy im proces aplikacyjny wysle wiadomosci do
procesu o indeksie wiekszym.

« Znacznik jest przesytany dalej, gdy obserwowany proces staje sie
pasywny

* Po wystaniu znacznika monitorowi przypisywany jest kolor White

« Algorytm konczy sie, gdy znacznik koloru White dotrze do inicjatora

Dla uproszczenia prezentacji, w algorytmie wykorzystano funkcje:
suce(i) = (i) mod, + 1
pred(i) = (i+n-2) mod,, + 1

Problem detekcji zakonczenia (1) (22)

Zostanie obecnie omowiony algorytm autorstwa Dijkstry, Feijen oraz van Gasterena
detekcji zakohczenia dla modelu przetwarzania synchronicznego. Wykorzystuje on wykorzystuje
koncepcje ciggu cykli detekcyjnych izaktada, ze wszystkie monitory proceséw aplikacyjnych
potaczone sg w logiczny pierscien i obserwujg stany proceséw aplikacyjnych.

Monitorom (procesom) przypisany jest kolor White albo Black.

Monitory przesytajg wzdtuz pierscienia wiadomos¢ kontrolng — znacznik typu TOKEN, ktory réwniez
moze mie¢ kolor White albo Black.

Poczatkowo monitory majg kolor White, a zmieniajg kolor na Black, gdy odpowiadajacy im proces
aplikacyjny wysle wiadomosci do procesu o indeksie wiekszym.

Monitor inicjujacy detekcje zakohnczenia Q,= Q, wysyta znacznik koloru White do swego nastepnika
w pierscieniu Q, jezeli obserwowany przez niego proces aplikacyjny jest pasywny.

Kazdy kolejny monitor Q; odbierajacy znacznik czeka az obserwowany przez niego proces stanie sie
pasywny i wowczas wysyta znacznik o kolorze zgodnym z kolorem monitora.

Po wystaniu znacznika monitorowi przypisywany jest kolor White.

Algorytm konhczy sie, gdy znacznik koloru White dotrze do inicjatora. Dla uproszczenia prezentaciji,
w algorytmie wykorzystano funkcje:

succ(i) = (i) mod, + 1
pred(i) = (i+n—2) mod, + 1

Przyklad detekcji zakonczenia runda zakoinczona niepowodzeniem

Przetwarzanie rozproszone

Przyktad detekcji zakonczenia runda zakonczona niepowodzeniem

v

O O
N" (m:c;ator)

Problem detekcji zakonczenia (1) (23)

Przetwarzanie rozproszone

Przyktad detekcji zakonczenia runda zakonczona niepowodzeniem

Runda zakonczona,
konieczna kolejna
iteracja

Problem detekcji zakonczenia (1) (23)

Na przedstawionym slajdzie inicjator (proces P,;) przesyta znacznik koloru White do swojego
nastepnika, Ps. Nastepnie znacznik ten jest przesytany w pierscieniu do kolejnego procesu, Ps. Oba te
procesy posiadajg przypisany kolor White, a wiec byt pasywny w biezgcej rundzie detekcji. Znacznik
wiec nie zmienia koloru. Tymczasem proces P, wysyta wiadomos¢ aplikacyjng do procesu Pg, co
powoduje zmiane jego koloru na Black. Kiedy wiec znacznik dociera do P, zmienia kolor réwniez na
Black. Po przejsciu catego pierscienia znacznik powraca do inicjatora. Poniewaz znacznik przyjat kolor

Black, detekcja zakonczenia nie zostata uwienczona powodzeniem.

Przyklad detekcji zakonczenia runda zakonczona sukcesem

Przetwarzanie rozproszone

Przyktad detekcji zakoriczenia runda zakonczona sukcesem

OF ()
NT (fm‘cjator{‘__,.....“...‘.---"

Problem detekcji zakoniczenia (1) (24)

Przetwarzanie rozproszone

Przyktad detekcji zakoriczenia runda zakonczona sukcesem

(inicjator) |
Pt Wykryto
O ————_ zakoiczenie |

Problem detekcji zakoniczenia (1) (24)

o -
N1 /C>

Monitor zmienia wiec kolor na White i ponownie wysyta znacznik o kolorze White do swojego
nastepnika w pierscieniu. Sytuacja jest podobna jak poprzednio — znacznik jest przesytany miedzy
procesami od inicjatora, P;, do jego nastepnika Pg, dalej do Ps. W tym momencie proces P, wysyta
wiadomos¢ do procesu P, — nie powoduje to jednak zmiany koloru przypisanego do procesu, gdyz
indeks adresata wiadomosci jest mniejszy niz indeks nadawcy. Kiedy wiec znacznik dociera do
procesu Py, jego kolor sie nie zmienia i dalej jest przesytany réwniez z przypisanym kolorem White.

Ostatecznie znacznik dociera do inicjatora detekcji, a poniewaz jego kolor pozostaje White, inicjator
moze stwierdzi¢ wykrycie zakonczenia.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (1)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (1)

type PACKET extends FRAME is record of
data : MESSAGE
end record

type TOKEN extends FRAME is record of
colour : enum { White, Black }
end record

Problem detekcji zakonczenia (1) (25)

Algorytm wykorzystuje pakiety dwoéch typow: pierwszy, typ PACKET, opakowujg wiadomosci
aplikacyjne. Drugi typ, TOKEN, to znacznik posiadajacy pole colour oznaczajgce kolor znacznika.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (2)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (2)

msgln : MESSAGE

pcktout : PACKET

tokenoOut : TOKEN

tokenPresent; : BOOLEAN := False

procColour; : enum {White, Black} := White

terminationDetected; : BOOLEAN := False

Problem detekcji zakonczenia (1) (26)

Wiadomos¢ msgln oznacza wiadomosc¢ aplikacyjng wysytang przez proces P;, ktéra jest opakowywane
w postaci pcktOut. Wiadomosé tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresent; okresla
obecnos¢ znacznika w procesie P, Zmienna procColour; stuzy do okreslenia koloru monitora

(procesu). Zmienna terminationDetected; zostaje ustawiona na True jezeli wykryte zostato zakonczenie.
Poczatkowo monitory majg kolor White.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (3)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (3)

procedure InitProc()
tokenOut.colour = White
send(Q,, Q.,.qr tokenOut)
tokenPresent = False

5. procColour, = White

6. end procedure

N W by

Problem detekcji zakonczenia (1) (27)

Procedura INITPROC wywolywana jest przez monitor Q, (o = 1) podczas inicjacji kolejnej rundy.
Powoduje ona przestanie nastepnikowi w pierscieniu znacznika o kolorze White oraz przypisanie
warto$ci White zmiennej procColour,,.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (4)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (4)

when e start(Q,, TerminationDetection) do
wait until passive,
InitProc()

10. end when

W @ -

11. when e send(P;,, P,, msgOut : MESSAGE) do

12. if i < j then

13. procColour;= Black
14. end if

15. pcktOut.data:= msgOut

186. send (Q;, Q;, pcktOut)

17. end when

Problem detekcji zakonczenia (1) (28)

Monitor inicjujacy detekcje zakonczenia Q,= Q; wysyta znacznik koloru White (wywotujac procedure
INITPROC) do swego nastepnika w pierscieniu Q, jezeli obserwowany przez niego proces aplikacyjny

jest pasywny.

Monitor Q; zmienia kolor na Black, jezeli obserwowany przez niego proces wysyla wiadomosc
aplikacyjng do procesu o wyzszym indeksie.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (5)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (5)

18. when e _receive(Q,, Q;, pcktIn : PACKET) do
19, msglIn = pcktlIn.data

20. deliver(P., P;, msgln)

21. end when

Problem detekcji zakonczenia (1) (29)

Algorytm nie przewiduje zadnych specjalnych akcji dla zdarzenia odbioru wiadomosci aplikacyjnej.
Jest ona po prostu dostarczana do skojarzonego z monitorem procesu aplikacyjnego.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (6)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (6)

22. when e_receive(Q,,...,, Q;, tokenIn: TOKEN) do

23. tokenPresent;= True

24. wait until passive,

25. if i = o then

26. if procColour, = White A
tokenIn.colour = White then

27. terminationDetected;= True

28. decide (terminationDetected,)

29. else

30. InitProc()

31. end if

Problem detekcji zakoriczenia (1) (30)

Odebranie znacznika (tokena) przez proces Q; wystanego przez jego nastepnika w pierscieniu Qs
powoduje ustawienie zmiennej tokenPresent; na warto$¢ True. Znacznik jest zatrzymywany w monitorze
Qi do czasu az obserwowany przez niego proces aplikacyjny P; stanie sie pasywny.

Jezeli Q; =Q, i kolor zarbwno obserwowanego procesu jak i znacznika jest White, inicjator konczy

algorytm decydujac o wykryciu zakonczenia. Jezeli Q;=Q, ale albo kolor procesu, albo kolor znacznika
réwny jest Black, inicjator rozpoczyna kolejng runde algorytmu.

Detekcja zakonczenia: Dijkstra, Feijen, van Gasteren (7)

Przetwarzanie rozproszone

Alg. Dijkstra, Feijen, van Gasteren (7)

32. else

33. tokenOut.colour= tokenlIn.colour
34. if procColour, = Black then

35. tokenOut.colour:= Black

36. end if

37. send(Q;, O, .,,r tokenOut)

38. t:okenPresént_;-:= False

39. procColour;:= White

40. end if

41. end when

Problem detekcji zakoriczenia (1) (31)

Monitory Q; #Q, przesyta dalej token o kolorze takim samym jak kolor obserwowanego procesu
aplikacyjnego, zmienia nastepnie kolor procesu na White oraz zmienia wartos¢ tokenPresent; na
wartos¢ False.

Model przetwarzania dyfuzyjnego

Przetwarzanie rozproszone

Model przetwarzania dyfuzyjnego

Przetwarzanie dyfuzyjne (ang. diffusing computation) jest
specyficznym przetwarzaniem rozproszonym, w ktérym
wyrdznia sie:

* inicjatora — moze w dowolnej chwili rozpoczg¢
przetwarzanie dyfuzyjne wysytajgc wiadomosc¢
aplikacyjng do jednego lub wielu proceséw
kooperujgcych

* hierarchie kooperujgcych procesow

Problem detekcji zakonczenia (1) (32)

Przetwarzanie dyfuzyjne (ang. diffusing computation) jest specyficznym przetwarzaniem
rozproszonym, w ktérym wyrdznia sie:

e inicjatora ($rodowisko) — moze w dowolnej chwili rozpocza¢ przetwarzanie dyfuzyjne
wysytajac wiadomos¢ aplikacyjng do jednego lub wielu proceséw kooperujacych (zaktada sie,
ze inicjacja taka zachodzi tylko raz),

e hierarchie kooperujagcych proceséw.

Kazdy proces po uzyskaniu pierwszej wiadomosci aplikacyjnej, nadawce tej wiadomosci traktuje jako
proces angazujgcy (ang. engager) irealizuje dalsze przetwarzanie wysytajgc wiadomosci do innych
procesow, w tym ewentualnie do inicjatora.

Zatozenia dodatkowe

Przetwarzanie rozproszone

Zatozenia dodatkowe

* Proces aktywny staje sie procesem pasywnym tylko w
wyniku pewnego zdarzenia wewnetrznego

* Proces zawsze staje sie aktywny po otrzymaniu
wiadomosci

* Proces pasywny moze stac¢ sie aktywny tylko w wyniku
otrzymaniu wiadomosci

Problem detekcji zakonczenia (1) (33)

Dla utatwienia opisu przedstawianych algorytmow, przyjmiemy pewne dodatkowe upraszczajgce
zatozenia:

e Proces aktywny staje sie procesem pasywnym tylko w wyniku pewnego zdarzenia
wewnetrznego

e Proces zawsze staje sie aktywny po otrzymaniu wiadomosci
e Proces pasywny moze stac sie aktywny tylko w wyniku otrzymaniu wiadomosci

Innymi stowy, proces aplikacyjny moze w dowolnej chwili staé sie pasywny ioczekiwa¢ na
uaktywniajacg go wiadomos$¢é aplikacyjng od dowolnego innego procesu. Warunek uaktywnienia

procesu definiuje zatem model zadan OR i zbiér warunkujacy D= P\ { P; }.

Koncepcja algorytmu detekcji zakonczenia (Dijkstra-Scholten ’80)

Przetwarzanie rozproszone

Algorytm Dijkstry-Scholten’a: Koncepcja

* Monitory proceséw aplikacyjnych przesytajg wiadomosci
kontrolne jako pewnego rodzaju odpowiedzi na
wiadomosci aplikacyjne.

* Monitor pasywnego inicjatora moze stwierdzi¢
zakonczenie przetwarzania po odebraniu wiadomosci
kontrolnych od wszystkich monitorobw zwigzanych
Z procesami uaktywnionymi przez inicjatora.

Problem detekcji zakoniczenia (1) (34)

Monitory proceséw aplikacyjnych przesytajg wiadomosci kontrolne typu SIGNAL jako pewnego
rodzaju odpowiedzi na wiadomosci aplikacyjne.

Monitor pasywnego inicjatora moze stwierdzi¢ zakorczenie catego przetwarzania aplikacyjnego, gdy
odbierze wiadomosci SIGNAL od wszystkich monitoréow zwigzanych z procesami uaktywnionymi przez
inicjatora.

Graf przetwarzania dyfuzyjnego

Przetwarzanie rozproszone

Graf przetwarzania dyfuzyjnego

AN
AN

Problem detekcji zakoriczenia (1) (35)

Inicjatorem przetwarzania dyfuzyjnego w przestawionym przyktadzie jest P;. Staje sie on procesem
angazujacym dla procesow P,, P; oraz P,. Kazdy z nich z kolei sam angazuje kolejne procesy.
Procesy tworzg wiec drzewo, a wiadomosci sg przesytane od inicjatora (korzenia drzewa) i nizej.

Graf przetwarzania dyfuzyjnego (2)

Przetwarzanie rozproszone

Graf przetwarzania dyfuzyjnego (2)

AN
AN,

Problem detekcji zakoriczenia (1) (36)

Procesy odsytajg specjalne wiadomosci, poczynajac od lisci drzewa. Kazdy proces — wezet drzewa
przesyta wiadomo$¢ do swojego procesu angazujgcego, jesli zebrat juz wiadomosci od wszystkich
procesow potomnych. W momencie, w ktdrym inicjator zbierze wszystkie wiadomos$ci od swoich
procesow potomnych, moze uznac, ze zostato wykryte zakonczenie przetwarzania.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (1)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (1)

type PACKET extends FRAME is record of
data : MESSAGE
end record

type SIGNAL extends FRAME

Problem detekcji zakonczenia (1) (37)

Algorytm wykorzystuje pakiety dwoéch typow: pierwszy, typ PACKET, opakowujg wiadomosci
aplikacyjne. Drugi typ, SIGNAL to specjalna wiadomos¢ kontrolna przesytana miedzy monitorami.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (2)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (2)

msgln : MESSAGE

pcktOut : PACKET

signalln : SIGNAL

engager, : PROCESS_ID
notEngager; : set of PROCESS 1D
recvNo; : INTEGER:= 0
sentNo; : INTEGER:= 0

terminationDetected, : BOOLEAN:= False

Problem detekcji zakoriczenia (1) (38)

Wiadomos¢ msgln oznacza wiadomosc¢ aplikacyjng wysytang przez proces P;, ktéra jest opakowywane
w postaci pcktOut. Zmienna engager; zawiera identyfikator monitora, ktérego proces uaktywnit P;. Z
kolei zbiér notEngager; oznacza zbiér monitoréw réznych od monitora angazujgcego, od ktérych
odebrano pakiet. Zmienne recvNo; oraz sentNo; oznaczaja, odpowiednio, liczbe wiadomosci
odebranych bgdz wystanych przez P; a nie potwierdzonych jeszcze przez Q; wiadomos$cig typu
SIGNAL. Zmienna terminationDetected; zostaje ustawiona na True jezeli wykryte zostato zakonczenie.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (3)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu

dyfuzyjnego (3)

when e start(P,, P, msgOut: MESSAGE,
DiffusingComputation) do

2. Q= {0; : P, € PF}
3. pcktOut.data:= msgOut
: sentNo, = | Q.F |

send (Q,, Q. F, pcktout)

end when

Problem detekcji zakoriczenia (1) (39)

Przetwarzanie dyfuzyjne jest inicjowane przez proces P, ktory wysyta wiadomosci do swoich

bezposrednich potomkéw w hierarchii nalezgcych do zbioru P,X. Zmienna sentNo, zawiera liczbe tych
wystanych wiadomosci.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (4)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (4)

7. when e send(Q;,, Q,, signalOut : SIGNAL) do

8. if recvNo,=1 A sentNo;=0 A passive;
9. then

10. Q. = engager;

11. send (Q;, Q;,, signalOut)

12. else '

13. for Q. € notEngager; do

14. notEngager; = notEngager; \ Q.
15. send (Q;, Q., signalOut) J
16. end for '

17. end if

18, recvNo;’= recvNo;, - 1

19. end when

Problem detekcji zakoriczenia (1) (40)

Zdarzenie wystania wiadomosci typu SIGNAL moze zajs¢ dla monitora Q; dla tylko wtedy, gdy
(recvNo; > 1) v (recvyNo; = 1 A sentNo; = 1 A passive;). Monitor Q; wysylajac wiadomosé typu SIGNAL
sprawdza, czy odebrat juz wiadomosci od wszystkich proceséw poza angazujacym (recvNo; = 1), nie
wystat zadnej nie potwierdzonej wiadomosci (sentNo; = 0) a skojarzony zen proces jest pasywny. W
takim wypadku wysyta procesowi angazujacemu sygnat. W przeciwnym wypadku wysyta wiadomosé
kontrolng typu SIGNAL do wszystkich monitoréw proceséw od ktérych otrzymat jakgs wiadomosc i
jeszcze jej nie potwierdzit do tej pory wiadomoscig SIGNAL, poza monitorem procesu angazujacego, i
usuwa te procesy z zbioru notEngager;. Wreszcie dekrementuje zmienng recvNo;.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (5)

Przetwarzanie rozproszone

Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (5)

20. when e_receive(Qj, Q;, signalln
: sentNo;:= sentNo; - 1
22. if Q;=Q\A sentNo,=0
23 wait until passive,
terminationDetected;= True
decide (terminationDetected,)
end if
end when

then

STGNAL) do

Problem detekcji zakonczenia (1) (41)

Monitor Q;
potwierdzonych wystanych wiadomosci). Jezeli

odbierajgc sygnat dekrementuje zmienng sentNo; (gdyz zmienna ta oznacza ilo$¢ nie

Qi = Q, A sentNo; = 0, to w momencie w ktdorym skojarzony proces aplikacyjny P, stanie sie pasywny,

monitor decyduje o wykryciu zakonczenia.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (6)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (6)

when e send(P;, P;,, msgOut: MESSAGE) do
pcktOut.data :z'mngut
30. sentNo; = sentNo;, + 1
1. send (Q;, Q., pcktOut)
;2. end when

Problem detekcji zakonczenia (1) (42)

Zdarzenie wystania wiadomosci aplikacyjnej moze zajs¢ dla monitora Q; dla i # o tylko wtedy, gdy
recvNo; > 0 A — passive;. Wysytajac dowolng wiadomosc¢ aplikacyjng monitor inkrementuje licznik nie
potwierdzonych wiadomosci sentNo;.

Algorytm detekcji zakonczenia dla dyfuzyjnego modelu przetwarzania (7)

Przetwarzanie rozproszone
Algorytm detekcji zakoriczenia dla modelu
dyfuzyjnego (7)

when e receive(Q,, Q,, pcktIn: PACKET) do
if recvNo, = 0 then
engager; = Q,
else '
notEngager; = notEngager; U {Q.}
38, end if
recvNo; = recvNo; + 1
40. msgIn = pcktIn.data
1 deliver(P., P;,, msgln)
end when '

Problem detekcji zakoriczenia (1) (43)

W przypadku otrzymania wiadomosci, jezeli jest to pierwsza otrzymana wiadomos¢ (recvNo; = 0) to
monitor Q; uznaje nadawce za proces angazujacy, a w przeciwnym wypadku dodaje go do zbioru
notEngager;. Nastepnie inkrementuje licznik recvNo; i dostarcza wiadomos$¢ procesowi aplikacyjnemu.

Twierdzenie 9.3

Przetwarzanie rozproszone

Twierdzenie 9.3

Twierdzenie 9.3

Jezeli przetwarzanie dyfuzyjne ulegto zakonczeniu, fakt ten
ulega wykryciu przez algorytm Dijkstry-Scholtena.

Problem detekcji zakoriczenia (1) (44)

Twierdzenie 9.3

Jezeli przetwarzanie dyfuzyjne ulegto zakonczeniu, fakt ten ulega wykryciu przez algorytm Dijkstry-
Scholtena.

Dowéd

Jezeli przetwarzanie dyfuzyjne ulega zakonczeniu, oznacza to, ze nie ma zadnego aktywnego
procesu ani nie ma zadnych wiadomosci ani sygnatébw w kanatach komunikacyjnych. Oznacza to
takze, ze zaden proces nie moze wysyta¢ zadnych wiadomosci ani potwierdzen. W zwigzku z tym,
mozna wywnioskowac, ze jezeli przetwarzanie ulegnie zakonczeniu, to w kazdym procesie P; (za
wyjatkiem procesu-inicjatora) zachodzi: recvNo; > 0 A sentNo; > 0 oraz recvNo; > 1 v (recvNo; = 1 A
sentNo; = 0). Spostrzezenie to mozna uprosci¢ do postaci recvNo; = 0 v (recvNo; = 1 A sentNo; > 0).

Z kolei dla procesu inicjujgcego oczywiste jest, ze zachodzi recvNo; = 0 A sentNo; > 0).

Dalej mozna wywnioskowac, ze w stanie zakonczenia przetwarzania VP;: recvNo; < sentNo; . Poniewaz
zadne wiadomosci ani sygnaty nie sg przesyfane, wiec suma wszystkich recvNo; wszystkich proceséw
musi by¢ réwna sumie wszystkich sentNo;. Z tych dwoch wnioskéw oraz z spostrzezenia tyczacego
wartosci zmiennych u inicjatora, wynika, ze w wyniku zakonczenia przetwarzania w procesie inicjatora
zachodzi recvNo; - sentNo;= 0, a poniewaz proces ten jest pasywny, wiec zostang spetnione warunki
wykrycia zakonczenia.

Detekcja zakonczenia dla systeméw asynchronicznych (Misra '83)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow

asynchronicznych (Misra '83): Zatozenia

« Brak zatozen o topologii przetwarzania
» Brak zatozen o czasu przesytania wiadomosci

* Niezawodna komunikacja

Kanaty FIFO

« Uzywa znacznika (ang. token)

Problem detekcji zakoriczenia (1) (45)

Dla systemow asynchronicznych mozna wykorzysta¢ w celu detekcji zakonczenia algorytm (Misra’83),
ktéry nie czyni zadnych zatozen co do topologii przetwarzania i czasu przesytania. Algorytm ten
wymaga natomiast, by zadne nie wiadomosci nie byly gubione podczas transmisji (niezawodnos$é
komunikacji) oraz by kanaty komunikacyjne zachowywaty porzadek wysytania wiadomosci (kanaty
FIFO).

Algorytm ten, podobnie jak przedstawiony wczesniej algorytm dla modelu synchronicznego (Dijkstra,
Feijen, van Gasteren) uzywa znacznika, oraz kolorowanie proceséw. Dla utatwienia analizy, mozna
przyja¢, ze wszystkie topologia przetwarzania to graf w pefni potaczony, jednakze algorytm tatwo
mozna dostosowaé¢ do dowolnej topologii, co zostanie pokazane dale;j.

Detekcja zakonczenia dla systeméw asynchronicznych: algorytm (1)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow
asynchronicznych (1)

type PACKET extends FRAME is record of
data : MESSAGE
end record

type TOKEN extends FRAME is record of
nb : INTEGER
end record

Problem detekcji zakoriczenia (1) (46)

Algorytm wykorzystuje pakiety dwoch typdw: pierwszy, typ PACKET, opakowujg wiadomosci
aplikacyjne. Drugi typ, TOKEN to specjalna wiadomos¢ kontrolna, znacznik, przesytana miedzy
monitorami, zawierajgce pole nb oznaczajace liczbe proceséw odwiedzonych przez znacznik, ktére
byly pasywne.

Algorytm detekcji zakonczenia dla systeméw asynchronicznych (2)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow
asynchronicznych (2)

msgln : MESSAGE

pcktout : PACKET

tokenOut : TOKEN

tokenPresent; : BOOLEAN := False

succ; : PROCESS_ID

c : set of CHANNEL ID

colour; : enum { White, Black } = Black

terminationDetected; : BOOLEAN := False

Problem detekcji zakonczenia (1) (47)

Wiadomos¢ msgln oznacza wiadomosc¢ aplikacyjng wysytang przez proces P;, ktéra jest opakowywane
w postaci pcktOut. Wiadomosé tokenOut jest znacznikiem typu TOKEN. Zmienna tokenPresent; okresla
obecnos¢ znacznika w procesie P;. Zmienna colour; stuzy do okreslenia koloru monitora (procesu).
Zmienna terminationDetected; zostaje ustawiona na True jezeli wykryte zostato zakonczenie.
Poczatkowo monitory majg kolor White.

Dwie zmienne zwigzane sg z topologig przetwarzania. Zmienna succ; zawiera nastepnika procesu P; w
cyklu obejmujagcym wszystkie kanaty komunikacyjne. Zwigzane jest to z wymaganiem, by znacznik

typu TOKEN odwiedzit wszystkie kanaly taczace procesy. C oznacza zbior wszystkich kanatéw
tworzacych cykl obejmujacy wszystkie kanaty komunikacyjne.

Algorytm detekcji zakonczenia dla systeméw asynchronicznych (3)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow
asynchronicznych (3)

when e start(P,, TerminationDetection) do
tokenOut.nb := 0
send (Q,, succ,, tokenOut)

end when

O S

Problem detekcji zakoriczenia (1) (48)

Zaczynajac detekcje, proces wysyta znacznik do swojego nastepnika w cyklu, przypisujac polu nb tego
znacznika wartos¢ 0.

Algorytm detekcji zakonczenia dla systeméw asynchronicznych (4)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow
asynchronicznych (4)

12. when e _receive(Q;,, Q;, pcktIn: PACKET) do
13. msgln :=pcktin.data

14. colour;:= Black
15. passive;:= False
16. deliver (P;,, P;, msgIn)

17. end when

Problem detekcji zakoniczenia (1) (49)

Otrzymanie wiadomosci aplikacyjnej przez monitor Q; powoduje, poza uaktywnieniem procesu P; i
dostarczeniem wiadomosci, zmiane koloru procesu na Black.

Algorytm detekcji zakonczenia dla systeméw asynchronicznych (5)

Przetwarzanie rozproszone

Algorytm detekcji zakonczenia dla systemow
asynchronicznych (5)

18. when e_receive(Q,, Q,.,, tokenIn: TOKEN) do
19. tokenPresent;:= True

20. wait until passive; = True

21 if colour;=Black then

22 tokenOut.nb:= 0

23 else

24 tokenOut.nb:= tokenOut.nb + 1
25 end if

26 send (Q,, succ;, tokenOut)

27 colour;:= White

28 tokenPresent;:= False

end when

Problem detekcji zakoriczenia (1) (50)

Po otrzymaniu znacznika, monitor Q; przesyta go dalej w momencie, gdy obserwowany przez niego
proces staje sie pasywny. Jezeli kolor procesu rowna sie Black, pole nb znacznika jest zerowane. W
przeciwnym razie jest ono inkrementowane. Kolor procesu nastepnie ustawiany jest na White oraz
monitor przesyla znacznik do swojego nastepnika w cyklu. Oznacza to, ze kazdy proces musi
pozosta¢ pasywny pomiedzy wszystkimi odwiedzinami znacznika, a znacznik musi co najmniej dwa

razy przejs¢ cykl.

Detekcja zakonczenia dla systeméw asynchronicznych: algorytm (6)

Przetwarzanie rozproszone
Algorytm detekcji zakonczenia dla systemow
asynchronicznych (6)

when e_receive(Q;, Q,r tokenIn: TOKEN) deo

tokenPresent;:= True
32, if colour,=White A tokenOut.nb= C|then
33. terminationDetected;’= True
34, decide (terminationDetected,)
35. else
36. if colour, = Black then
37. tokenOut.nb := 0
38. else
39. tokenOut.nb:= tokenOut.nb + 1
end if
41. send (Q;, succ,;, tokenOut)
42, colour;:= White
43. tokenPresent,:= False
44. end if
45. end when

Problem detekcji zakonczenia (1) (51)

Inicjator P, przetwarzania, po otrzymaniu znacznika, jezeli kolor procesu P, posiada warto$é White
oraz jezeli wartos¢ zapisana w polu nb otrzymanego znacznika rowna jest liczbie kanatow
komunikacyjnych (liczbie krawedzi grafu topologii przetwarzania), decyduje o wykryciu zakonczenia.
W przeciwnym wypadku przesyta znacznik dalej, byé moze zerujgc warto$é pola nb w podobny
sposob, jak kazdy inny proces.

Warte podkreslenia jest, ze w ogolnosci kazdy monitor, a nie tylko inicjator moze dokona¢ decyzji o
wykryciu detekcji zakoriczenia obserwujgc pole nb oraz kolor obserwowanego przez siebie procesu.

Cechy algorytmu Misra’83

Przetwarzanie rozproszone

Cechy algorytmu Misra’83

* Mozliwosc¢ rozszerzenia do dowolnej topologii
* Wiele monitoréw naraz moze wykrywac zakonczenie

+ Cykl obejmujacy wszystkie kanaty komunikacyjne musi
by¢ znany z gory

Problem detekcji zakonczenia (1) (52)

Aby dostosowaé przedstawiony algorytm do dowolnej topologii, wystarczy ustawi¢ odpowiednio
wartosci zmiennej succ; — wystarczy podzieli¢ graf topologii przetwarzania na zbioér cykli o
maksymalnej dtugosci i odwiedza¢ je po kolei. Wiele monitorow naraz moze dokonywaé detekc;ji
zakonczenia — w takim wypadku wystarczy doda¢ do znacznika pole wskazujace na inicjatora detekciji.
Duzg wadg algorytmu jest wymaganie, by cykle obejmujgce kanatly komunikacyjne byly znane z gory.

Nalezy tutaj podkresli¢, ze w algorytmie dowolny monitor moze decydowacé o wykryciu zakonczenia i w
gruncie rzeczy zaden z nich nie jest wyrézniony.

